Parker Hannifin Corporation Racor Division

Nonwoven Filter Media : Fuel Filtration a Case Study

Dr. Umer Farooq Sr. R&D Scientist

ENGINEERING YOUR SUCCESS.

Overview

- What is a nonwoven ?
- Applications and uses.
- Filtration Terminology.
- Fuel Filtration a case study

What is a nonwoven fabric?

"A fabric made directly from a <u>web</u> of fibre (or filaments), without the yarn preparation necessary for weaving and knitting".

What is a nonwoven?

Web Forming

- Drylaid carding, carding & lapping (cross or vertical), airlaying
- Wetlaid derived from papermaking
- Spunmelt (polymer-laid) filament extrusion, e.g. Spunlaid; Meltblown; Electrospun

Web Forming Production Methods (Europe: % tonnes)

Process	2006		2007		2008	
	,000 T	Δ%	,000 T	Δ%	,000 T	Δ%
Spunmelt (1)	710.6	9.4	776.5	9.3	758.7	-2.3
Drylaid (2)	623.8	5.8	659.6	5.7	685.7	4.0
Wetlaid	106.8	8.8	107.8	0.9	115.7	7.4
Airlaid	140.2	5.7	154.8	10.4	162.3	4.8
Total	1,581.4	7.6	1,698.7	7.4	1,722.4	1.4

Copyright: EDANA August 2009

- (1) Includes spunlaid and other polymer-based processes e.g. meltblown, flashspun by extension as well as composites of these fabrics (e.g. SMS...)
- (2) Basically groups thermal and chemical bonding, plus needling or stitching only and hydroentangled webs. Does not include any airlaid products. The weight of adhesives, additives and similar chemicals has been taken into account in addition to binders.

Nonwovens are "Bonded" Webs

•In a nonwoven, the assembly of textile fibres is held together:

•1. by mechanical interlocking in a random web or batt,

•2. by melt-fusing the fibres in the case of thermoplastic fibres,

•3. by bonding with a cementing medium (natural or synthetic adhesive).

Mechanical bonding

Web Bonding Production Methods (Europe: % tonnes)

Process	2006		2007		2008	
	,000 T	Δ%	,000 T	Δ%	,000 T	Δ%
Thermally-bonded	123.7	-4.5	127.5	3.1	126.2	-1.0
Chemically-bonded	150.9	5.1	157.8	4.6	149.5	-5.3
Needled	147.1	16.8	160.9	9.4	175.4	9.0
Hydroentangled	194.3	9.1	208.3	7.2	231.5	11.1
Composites	7.8	-35.8	5.1	-35.0	3.2	-37.9
Total Drylaid	623.8	5.8	659.6	5.7	685.7	4.0

Copyright: EDANA August 2009

Convergence of 3 industries

Polymer utilisation in nonwoven fabrics Filament form (left) and Fibre form (right) - Tonnes

European Production of Nonwovens (10³ tonnes)

Overview

- What is a nonwoven ?
- Applications and uses.
- Filtration Terminology
- Fuel Filtration a case study

Product Life: Product Lifespan Disposable vs Durable

Major applications (tonnes)

Overview

- What is a nonwoven ?
- Applications and uses.
- Filtration Terminology.
- Fuel Filtration a case study

Filtration (of liquid, air, gas)

Key Terms Defined...

- Filtration refers to the act of separating one or more distinct phases from another in a process which uses physical differences in the phases – such as particle size or density or electric charge.
- A *filter medium (or media)* is any material, that under the operating conditions of the filter, is permeable to one or more components of a mixture, solution or suspension and is impermeable to the remaining components.
- The operation of a filter usually needs a pressure differential across the filter medium, and this can be effected by means of fluid pressure upstream of the medium (pressure filters) or suction downstream (vacuum filters).

Filtration System and Process Parameters

Confidential – Property of Parker/Racor

18

2 Modes of Filtration

19

Basic filtration mechanisms – Micro Level

Filtration Mechanism – Macro Level

Filtration Mechanism – Macro Level

Overview of Markets for Basic Type of Nonwoven Media

	Type of non-woven media						
			Bonded Media				
				Spun Media			
Market Segment	Needle felt	Dry laid	Wet laid	Spunbonded	Meltblown		
Air Filters		X		x	x		
Fabric Dust Filters	x						
Tea Bags			x				
Coffee Bags		X					
Milk		X			x		
Vacuum Cleaner Bags	x		x		x		
Edible Oil			x		x		
Face Masks	x	X					
Food & Beverages			X	x			
Fuel & oil	x		X	x	×		

Global Market for Non-woven Filter Media 2005 – 2015 (Projected) US \$ Millions

From, BCCResearch.com "Nonwoven Filter Media: Technologies and Global Markets" 2011

Overview

- What is a nonwoven ?
- Applications and uses.
- Filtration Terminology.
- Fuel Filtration a case study

Filters in Automotive Applications – A Case Study on Fuel Filters and Water Separators in Diesel Engines

Filters in Automotive Applications – Light Vehicle

Confidential – Property of Parker/Racor

27

BACKGROUND

- Ever tightening emission requirements high pressure modern fuel systems with precise injection equipment
 - Injection volumes microlitres;
 - Injection cycle timings milliseconds;
 - Injection pressures in the order of 30,000 psi
- ... Precision injection systems require contamination free fuel
- WATER is a FUEL CONTAMINANT and can affect:

- Physical properties of the fuel by altering its filterability
- Accelerates fatigue wear in highly stressed parts of engine injectors, by:
 - promoting corrosion of steel components,
 - encouraging microbiological growth
 - reduces lubricity causing nozzle and pump plunger scoring
 - FATAL FOR HIGH PRECISION DEISEL ENGINE INJECTORS – ENGINE MANUFACTURERS ARE NOW DEMANDING 100% WATER FREE FUEL
- Fuel filters and water separators are used to remove the contaminants before diesel enters the injectors

PROBLEM AT HAND

- The efficiency of existing water separating media has recently been adversely affected by radical changes in the composition of the diesel fuel; namely:
 - Introduction of Ultra Low Sulphur Diesel (ULSD) which requires additives e.g. lubricity enhancers, rust inhibitors, and anti-wear agents
 - Advent of Bio-diesels European Legislation targets aim to increase content of the bio-fuels in EN590 (standard diesel) up to 20% by 2020!

All these additives belongs to the chemical category of SURFACTANTS ...

Surfactants ...

 Surfactants are *amphiphlic* organic compounds i.e. they contain both hydrophobic groups (their *tails*) and hydrophilic groups (their *heads*) – soluble in both organic solvents and water.

Surfactants ...

1. Surfactants change the nature of water in fuel.

- Water drops in ULSD and biodiesel blends are smaller.
 - Surfactants lower interfacial tension between fuel and water, and enable smaller droplets to form.
- Water drops in ULSD and biodiesel blends are more resistant to coalescence.
 - Surfactants associate with water drop surfaces, and create a barrier to drop coalescence. Coalescence is required for successful water separation.

2. Surfactants change the surface chemistry of water separation media.

• Surfactants associate with media surfaces, and alter surface energies that are fundamental to successful separation.

Current Fuel Filters and Water Separators

The Hydrophobic Barrier Type

Barrier type

coalescers function through the use of hydrophobic (nonwettable) barrier to stop water droplets at the Upstream side.

Droplets smaller than the filter pore size may not be captured

Enhanced Water Separation Through Surface Modifications

Existing Parker melt-blown hydrophobic cellulose composite media was used.

Alter the surface characteristics of the media by:

- Super hydrophobic treatments
- Hydrophilic treatments
- Deposition of electro-spun nano-fibres
- Hydrophobic / Oleophilic Treatments

Super Hydrophobic Treatments

 A combination of plasma and electrospraying techniques were used to successfully create super-hydrophobic surfaces:

Confidential – Property of Parker/Racor

Hydrophilic Treatment

Electro-spraying technique was used to create Hydrophilic surfaces

Nano-fibre coatings

 Nano-fibres (*Dia* ≈ 100 – 300 nm) were sprayed on our existing barrier media using state-of-the-art electro spinning technique:

A typical coalescence bed filter

Development of samples

Thank you ... questions, comments?

