

Objects.....

- The object is to remove from the grey fabric the size that has been applied during weaving and thus to make the fabric ready for further processes.
- The main ingredient in size that is not water-soluble is usually starch.
- Chemically starch is poly-glucopyranose in which straight chain and branched chain polymers are present.
- Both the constituents of starch are insoluble in water but they can be made soluble by hydrolysis of these long chain compounds to shorter ones.

Rot Steep..

- This is the oldest and cheapest method of desizing.
- Here no special chemical is used.
- The cloth is first passed through warm water at 40C in a padding mangle where the cloth is squeezed to about 100% expression.
- The cloth is then allowed to stand for 24 hours.
- The microorganisms, naturally present in water, multiply and secrete starch-liquefying (hydrolysing) enzymes, which break down the starch present in the size to water-soluble products.
- The cloth is then washed to remove these products.

Advantages

- 1. Rot steeping is the cheapest of all the desizing methods.
- 2. No chemicals are required.

Disadvantages

- A large floor space is required for this process.
- The process is slow, so desizing time is long.
- Mildew may attack the cloth during steeping and cause stains on the fabric.

Acid Desizing

- Dilute sulphuric acid or hydrochloric acid may be used to hydrolyse the starch from the sized fabric.
- A 0.25% 0.5 % solution of the acid at room temperature (30° C) is suitable for this process.
- The cloth is impregnated with the dilute acid solution in a two-bowl or threebowl padding mangle and then stored for 8-12 hours in a closed concrete pit.

Advantages of acid desizing

- Acid desizing is an economical process.
- The process is effective and gives fairly uniform desizing, as it is a chemicalbased process. It does not require specific conditions of pH and can be done at room temperature.
- It is a much quicker process than rot steep desizing.

Disadvantage of acid desizing

- The main disadvantage of the process is that mineral acid is harmful to cellulose fibres if proper care is not taken.
- Especially during the storage stage, the acid-wet fabric must not be allowed to dry.
- This would cause the formation of hydrocellulose, which will weaken the fibre.

Enzyme Desizing

- In enzyme desizing, specific enzymes are used to liquefy the starch in the fabric and make them soluble.
- Enzyme desizing is a very rapid and thorough method of desizing provided that the proper conditions of temperature and pH are maintained. The optimum temperature and pH of the different enzymes are given below.

Malt Extract 3-20 50-60 6			Concentration (g/l)	Enzyme
	6-7.5	50-60	3-20	Malt Extract
Pancreatic 1-3 50-60 6.	6.5-7.5	50-60	1-3	Pancreatic
Bacterial 0.5-1 60-70 5.	5.5-7.5	60-70	0.5-1	Bacterial

Advantages of enzyme desizing

- Time required for the desizing process is less.
- It is continuous process, so greater production can be achieved.
- Closely constructed fabric can be easily desized, due to the effective enzyme action.
- There is no chance for the cellulose to get hydrolysed, as in acid desizing.

Disadvantages

 If the conditions of temperature, pH and time are not properly maintained, the desizing activity of the enzymes is destroyed.

Process	Concentration	Time	Temperature	
	(g/l)	(hour)/pH	(°C)	
Rot-steeping	_	10-16 h	30-40	
H ₂ SO ₄ -steeping	5-10	3-4 h	40	
•		(pH)		
Malt Diastase	3-20	4.5-5.5	50-60	
Pancreative Diastase	1-3	6.8-7.5	50-60	
Bacterial Diastase	0.5-1	6.5-7.5	60-70	

Desizing with Oxidizing agents

- Though the use of oxidants for desizing of cotton fabric is widely accepted but their large scale industrial application is yet to be exploited.
- The most important aspects of oxidizing agents are that they can be applicable to wide range of fabrics, the size content of which is often not known.
- Table summarizes the necessary conditions for desizing starch in presence of some important oxidizing agents.

Oxidising agent	Process	Additives (pad-bath)	рН	Time (min)	Temp. (°C)
Hydrogen peroxide	Pad-steam	1-2 vol. H ₂ O ₂ , 7-15 g/l NaOH.	8-9	1-5	90
Sodium bromite	Pad-batch (cold)	 1-3 g/l active Br₂, 20-30 g/l Caustic soda, 5-10 g/l Wetting agent. 	7.5-8.5	15	20-40
Persulphate	Pad-steam	3-6 g/l Na-persulphate 8-10 g/l Caustic soda, 5-10 g/l Wetting agent.	10-10.5	1-3	95-100
Persulphate + H_2O_2	Cold-batch	40 ml/1 H ₂ O ₂ (25%) 10 g/1 Persulphate, 10 ml/1 Water glass, 10 ml/1 NaOH 5 g/1 Stabiliser, 5 g/l Stabiliser,	10-10.5	6-20	20-40