
Resource Management in Operating Systems- A

Survey of Scheduling Algorithms

Khizar Hameed1, Aitizaz Ali1, Mustahsan Hammad Naqvi1, Muhammad Jabbar2, Muhammad Junaid1, Aun Haider1
1Department of Computer Science and Electrical Engineering, University of Management and Technology,

Sialkot, Pakistan
2Department of Computer Science, University of Gujrat,

Gujrat, Pakistan

[khizer, aitizaz.ali, mustahsan.naqvi, muhammad.junaid, aun.haider]@skt.umt.edu.pk, m.jabbar@uog.edu.pk

Abstract— Resource management is an important process in

all operating systems in which we have scarce resources to

manage all process running on that system. There are designed,

many algorithms for resource management and every algorithm

provide resource allocation to processes. The basic purpose of

this paper is to describe the working of these scheduling

algorithms, advantages/disadvantages and which algorithm

provides us high throughput and fairness? In the future, we plan

to extend this survey paper for different types of operating

systems such as mobile phones and embedded systems.

Keywords— Fair-share scheduler; Lottery scheduling; Round

robin;

I. INTRODUCTION

 Resource management is the process in all operating

systems in which particularly system resources (e.g. Central

Processing Unit (CPU), random access memory, secondary

storage devices, external devices, etc.) is assigned to

particularly processes, threads and applications. This is usually

done to achieve high throughput, quality of service, fairness

and balance between all processes[1][2][3] . To perform this

managing level task, we need scheduling algorithms to ensure

that all the processes share the system resources equally

according to need[3]. This scheduling level task is the basic

requirement for those systems that are performed multitasking

and multiplexing[4][5].

Scheduling policy is used in those systems where we have

scarce resources for many processes. Scheduling is basically

performed to reduce the waiting time and the time taken from

context switching[6]. All processes that competing for

resources are important and although scheduling scheme in

distributed systems is very complex. For example, an

important process that is in the job queue and waiting for

resources for completing the task but has no resources or even

not complete resources that are required to complete the

task[7]. So, this poor management may lead to decreases the

performance of the system. In the environment, it is the

responsibility of the system to schedule the resources in fairly

manner[8].

There are much kind of systems like batch system,
Interactive system, real time system and embedded system and

each system is performing scheduling according to
requirement of the processes and available resources. When
system resources are shared among processes, threads and
applications, there can be lots of conflicts during sharing. To
avoid these conflicts, we use different scheduling algorithms
for different kind of systems. In batch system, we mainly
focus on throughput, turnaround time and CPU utilization.
Interactive and real time system, we require response time and
predictability. For batch systems, we use First Come First
Served, Shortest Job First and Shortest Remaining Time Next
algorithms for managing system resources. For interactive
system, we use Fair Share scheduling Round Robin (RR)
scheduling, Lottery scheduling, and Priority scheduling. For
real time system, we use Rate Monotonic scheduling and
Earliest Deadline First scheduling [9][10][2].

In fair-share scheduling, we manage operating system
performance to assigning particular system resources to
competing processes by dynamically[11]. The responsibility
of fair-share scheduler to assigning resources of the system in
a fairly manner that each user or process running on the
system gets the resources. Basically the problem arise in such
systems where virtual environment runs many operating
systems so all processes running on the operating systems
required resources[12].so, we use fair-scheduler to handle this
managerial task. Fig. 1. shows the fair resources allocation
according the size of the processes.

Fig. 1. Fair-Share scheduler

 One of the other interactive system resource share
algorithm is a lottery scheduler that is also called a flexible
proportional share algorithm[13]. In a lottery scheduling the
processes access the system resources on the lottery ticket
base system and who draws the more lotteries for the
resources automatically the winner of the system resources for
required process.

The RR algorithm is also one of the scheduling approaches to
determine the turnaround time. In RR, a fixed quantum time is
assigned to each process and each process share the resources
of the system until the time quantum expired [2].

 The main objective of this paper is to provide the working
of interactive system resources scheduling algorithms. How
these resource scheduling algorithms are different from each
other, their advantages & disadvantages? Which algorithm
provides us high throughput, fairness and equality?

The rest of the paper is organized as follows. Section II
discussed existing state of the art resource management
algorithms. Performance evaluation of scheduling algorithms
is presented in Section III. Section IV concludes the paper
and future work.

II. EXISTING STATE OF THE ART RESOURCE MANAGEMENT

ALGORITHMS

 Resource management in operating systems is a very
important process to ensure that all users or processes get
resources accurate and in a fairly manner. All processes
running on operating system require the resources to complete
its execution. Many CPU scheduling algorithms have been
designed to allocate the system resources to processes for
ensure fairness among processes[11][14].

A. Fair Share scheduler

 The Fair share scheduler is one of the CPU scheduling
algorithms that are designed to share the available resources to
the processes by dynamically. Users share the system shares
that are proportional to the available resources of the
system[15]. It is also seen that the fair share scheduling
algorithm perform fairness among users as well as process.
Fair share scheduler is usually done to achieve fairness
between processes that no processes waiting for a long time to
get resources. Fair share scheduling allocates the system
resources to process by priority decision. The user has highest
priority get the more system shares as compare to low priority
users. When the same priority users compete for systems
resources so there are many approaches to allocate resources.
Firstly, user who has importance allocates the system
resources and secondly the same level of system resources is
assigned to same priority users. It is also seen that multimedia
applications that running on the operating systems require
more system shares as compare to other database applications.
Basically two terms Shares and usage mostly common use in
fair share scheduler. User have more shares in the system can
do more work on system as compare to other user that have
low shares in system can do less work. On the other side, the
term usage defines the quantity of work that has user done by
using the system[16][11][15].

 It is the not the responsibility of the scheduling algorithms
to just divide the available resources to processes or users but
divide the available resources according to the requirement of
the processes for execution. As clear from Fig. 2. that user 1
has more shares on system so it can do more work on system
as compared to user 2 that have fewer shares.

Fig. 2. Shares

There are two views to describe the fair share scheduler.
One is the user point of view and the second is the program. In
user

Fig. 3. User’s View of Share [14]

view, a usage of user is maintained by charges gained by each
process and also maintains the record of resources usage, but
in process view of the fair share scheduler; maintain the cost
of running processes and also maintain the priorities of
processes [11]. As Clearly from Fig. 3.

 Fair share scheduler includes fixed budget model, virtual
time round robin, lottery scheduling, RR, max-min fair
scheduling, stride scheduling, proportional share scheduling,
and hierarchical share scheduling[17][18][19][20].

B. Fixed Budget

 Another way of addressing the fair policy is fixed budget
model in which budget associated with each user. When the

user uses the resources they have to charge for using resources
for execution of processes and their budget will be reduced
and when the user has no budget, automatically it cannot use
the system resources further. It means that the user must have
a fixed budget to use the system resources. A user that has
more budget can use the system shares more and who have
less budget obviously less shares of the system. There are
many approaches have been designed in the fixed budget
model to define limits and bounds of systems resources like
disc capacity and printer.

C. VM-aware fair scheduler

 Fairness in also most critical issue in Symmetric
multiprocessors (SMP) where many processes run on
heterogeneous systems with different computational
competence. To perform fairness in a virtual machines
environment, VM-aware fair scheduler has been proposed to
overcome preemptive process issues that compete for
resources in a virtual machine environment. The performance
of VM-aware fair scheduler for preemptive processes is
greatly as compare to other virtual machine credit base
algorithms[21].

 Fair share scheduling is also used in UNIX operating
systems for resource management. Different terminologies of
resource management are used with different names in many
systems like a process resource manager in Hewlett Packard,
workload manager in IBM and system resource manager in the
SUN. Workload term in these systems is used as an
interchangeably as process and same as other systems we use
fair share scheduling to allocate system resources to
workloads to achieve high performance and throughput.
Response time of workloads is also an important factor when
we are describing about fair share scheduling and we
aggregate that this scheduling algorithm works fine if it gives
precise and effective resource sharing to workloads[11].

Let us consider an example of fair share scheduling in
which numbers of workloads running on the systems whose
arrive time and service time is known in advance. We know
that processes or workloads that are assigned to processers are
fractionally sharing among the processer of system and
conformation that resources assigned to each processes fairly.
For example, workloads share the 10 and 20 resources of
systems so these works load divide the time slice of the
system in the ratio of 1:2.As we already discussed thae
response time of workloads in fair share scheduling for UNIX
system is also important .There are also assigned the priorities
to workloads[11].

D. Practical Fair Share scheduler

 There have been also made extension in kernel scheduler
of Linux titled as Practical Fair Share scheduler that is
designed to meet the requirements of real-time processes. Fair
share algorithm scheme in most common in real-time process
with soft timelines. Practical fair scheduler is basically used
for migration and placement techniques in symmetric
multiprocessor or multicore systems. Migration technique is
used in processes to balance the resources of the system
among the processes that is automatically leads to better
performance of system[22].

 One describes the practical implementation of fair share
scheduling on two different systems to check the performance
by changing parameters of the fair share algorithm. One
system is an industrial system and the other is university
systems. Basically, first they developed the works loads model
of these systems, analyzed these work model and applied fair
share scheduling to these works models to get the
experimental results. These Experimental results tell that
whose system use the system resources “fairly” and
performance of the fair share scheduling under these
systems[15].

 They described implementation through Moab fair share
that includes one window of time and fair share scheduling
parameters that assigns the dynamic priority to processes are
Fair share interval, fair share depth and fair share decay
shortly FS_INTERVAL, FS_DEPTH and FS_DECAY
respectively. Windows of time describes the usage of systems
shares by processes, FS_INTERVAL describes the each fair
share window duration, FS_DEPTH describes the total
numbers of past fair shares windows that are used in current
fair share window calculations and FS_DECAY describes the
weightage of each past fair share windows into current fair
share windows[15][23].We can calculate the usage of each
usage if we know the parameters of fair share scheduling[15].

E. Virtual Time Round Robin

 One algorithm that is describing the fair share scheduling
scheme is Virtual Time RR that is combination of fair queuing
and RR algorithm. By using fair queuing technique, the
process residing in the running queue according to their
resources and fixes time quantum that is the main
characteristic of RR is associated with each process. If the
processes exceeds the limit of proportional shares resources
then it put back to the start of the queue and its execution will
start again[10].

F. Lottery scheduling

 Another technique for fair scheduling is lottery scheduling
that is basically proportional share resource allocations that
uses the randomized resources reservation policy for efficient
response time and provides control to the execution rates of
the processes. Basically proportional share resource
allocations algorithms are designed to address the problems of
real time applications in operating systems[10][24]. Lottery
scheduling also provides the modular technique for resource
allocation in which modules protect the resources from one
module to another module. Basically, there are many types of
processes computations and each computation requires the
system resources for completion of execution. In long time
running computations such as critical analysis and scientific
calculations required resources that behave differently as
compare to other interactive computations such as database
applications that required rapid response[13][25].Simulations
,scientific calculations and critical analysis basically are
processer bounds so they required processor related resources
while database applications are basically related to I/O and
memory bound so the requirements of resources for every
applications is different[26].

 In lottery scheduling, the resource allocation to the
processes or users on the base of lottery ticket. The term ticket
can be used in the meaning of currency in computing. The
user gets the share of system resources that is proportional to
the hold tickets by user[26]. One user or process that required
resources for execution of process must draw a lottery ticket.
Only those processes can take part in the lottery that is in the
running state while the processes are in the other states are not
eligible for lottery[19]. Basically the system resources will be
allotted for those users who win the lottery tickets. Lottery
tickets represented the resources rights. The more chances to
get the system resources for those users or processes that draw
the more lotteries. The probability P to win the lottery ticket is
simply t / T where t represents the ticket that a user hold and T
is the total available tickets so the equation becomes P=t/T. If
the user draws n identical lotteries so there is a number of
chances to win the ticket is E [w] = np where E [w] represents
the expected numbers of wins[13].One ticket is drawn to share
the resources. For example, 5th ticket is selected as a result.

 Process 1 have 3 tickets (∑ 3 > 5th ticket) so result is false.
Process 1 not allows to accessing the resources. Process 2 has
1 ticket (∑ 3+∑ 1=∑ 4 > 5th ticket) so result is false. Process 2
is also not allowing for accessing the resources. Process 3
have 3 tickets (∑ 3+∑ 1+∑ 3=∑ 7 > 5th ticket) so result is
true. Now process 3 is allowed for accessing the resources

 There have been many changes in the lottery scheduling
algorithms to ensure its best performance to resource
allocation management. One of these extensions in lottery
scheduling is ticket exchange method in which processes
exchange their resources with each other through ticket
exchanges[26].

G. Stride scheduling

 One of the scheduling approach that is stride scheduling-
deterministic scheduling approach that is similar to the lottery
scheduling. Stride scheduling is basically designed to achieve
relative high throughout rate and lower response time[17].

H. Round Robin scheduler

 The RR algorithm is also one of the scheduling approaches
to determine the fast turnaround time where we have no
confirmation of running times of processes. RR scheduling
algorithms is basically falling in the category of time quantum
in which a fixed quantum time q is assigned to each process
and each process wish that they request for maximum time
quantum to share the resources of the system. If the process
completes its execution before the given quantum time then it
must leave the system resources but if the process cannot
complete the execution before the allotted given time quantum
then it must be cycled back to end of queue and process must
wait for another time quantum to start its execution
again[2][27][28].

 The running time of processes under Round Robin (RR)
scheduling algorithm is assigned after when it has gained the
quantum time. If the process requires more system resources
for completion of its execution, then it put back to end of the

queue. RR basically uses the priority that is a combination of
running time and arrival time of process. The RR depends on
the quantum size q that is allocated to each process so there
are two situations of time quantum. If the time quantum is
infinite then there will be First Come First Serve policy but if
the time quantum is zero then we will be in limit and the
processor have no waiting line so all processes
executes[2][29][30].

III. PERFORMANCE EVOLUTION

Table 1 describes the evaluation of these scheduling

algorithms through different scheduling parameters such as

fairness, throughput, waiting time and response time as well as

evaluate which algorithms can be used to achieve fairness,

high throughput and also response time.

TABLE 1. Scheduling Algorithms Criteria

We evaluate our work on the bases of following parameters as

described

A. Fairness

Fairness defines the equal CPU time given to each process.

More generally equal CPU time given to the processes on the

priority and workload bases.

Scheduling

Algorithms

Scheduling Algorithms Criteria

Extended

Version

Fairness Throughput Waiting

Time

Response

Time

Fair Share

Scheduling
[11][15]



High

High

High

 Fixed

Budget
Model[31]



High

Low

Low

 Practical

Fair

Scheduler
[22]



High

Low

Low

 VM-aware

fair
Scheduler

[32]



High

Low

Low

Lottery
Scheduling

[26][13]

[19]



High

Low

High

 Stride
Scheduling

[17]



High

Low

Low

 Ticket
Exchange

[26]



Low

Low

High

Round

Robin[4]



High

High

High

 Virtual

Time

Round
Robin[33]



High

Low

High

B. Throughput

In the scheduling context, throughput is the total amount of

work or task that a specific computer can perform in specific

time. Different computers have different through time on the

base of computational power.

C. Waiting Time

Waiting time is the time that a process can wait in the ready

queue for accessing specified resources.

D. Response Time

Response time defines the amount of time that it takes to get a

first response after the request submitted for resources

.
TABLE 2. Merits and Demerits of Scheduling Algorithms

Table 2 shows the basic merits and demerits of the fair

scheduling algorithms that impact on the working of these

algorithms and differentiate one from another

IV. CONCLUSION

We conduct a survey in which we describe the working of

different scheduling algorithms and how resource

management issues in operating systems solved thorough

these scheduling algorithms. These scheduling algorithms

work well in different conditions and scenarios. We also

describe the merits and demerits of scheduling algorithms and

important role of this paper is comparisons of different

scheduling algorithms and conclude the result of these

algorithms according to scheduling algorithm criteria that is

fairness, throughput, waiting and response time. Basically, all

algorithms are designed to achieve fairness among processes,

but the difference in throughput, response time and waiting

time. In the future, we plan to extend this survey version for

smart mobile phone operating systems and embedded device

operating systems.

REFERENCES

[1] H. Bui, W. Emeneker, A. Apon, D. Hoffman, and L. Dowdy, “Fairshare

Scheduling – A Case Study,” Linux Cluster Institute (LCI) International
Conference on High Performance Cluster Computing, Pittsburch, PA,
March,pp.1-10, 2010.

[2] E. G. Coffman and L. Kleinrock, “Computer scheduling methods and
their countermeasures,” Proc. April 30--May 2, spring Jt. Comput. Conf.
- AFIPS ’68, p. 11, 1968.

[3 F.L. Liana and M. S. Squillante,"Time-function scheduling: a general
approach to controllable resource," Vol. 29. No. 5. ACM, 1995.

[4] S. T. Leutenegger and M. K. Vernon, “The Performance of
iMultiprogrammed Multiprocessor Scheduling Policies,” pp. 226–236,
1990.

[5] J. Zahorjan and C. McCann, “Processor scheduling in shared memory
multiprocessors,” ACM SIGMETRICS Perform. Eval. Rev., vol. 18, no.
1, pp. 214–225, April. 1990.

[6] T. Helmy and A. Dekdouk,"Burst Round Robin as a Proportional-share
Scheduling Algorithm," IEEEGCC, 2007.

[7] J. Kay and P. Lauder,"A fair share scheduler," Commun. ACM 31, pp.
44-55 ,1988

Scheduling Algorithms Merits Demerits

Fair Share Scheduling

 Priority based Scheduling

 Allocate resources to process by dynamically

 Provide fairness, both users and processes

 Processes got some effective time for execution

 Provide flexibility among processes

 Difficult to achieve fairness in multiprocessor systems

 Response time and wait time is also critical issue

Lottery Scheduling

 Schedule resources on lottery tickets

 A User who draws more lottery have chances to

win more resources

 Easy to understand and implemented

 Uses proportional share resource allocation policy

 Resource allocation is randomized to manage

various resources

 Stride scheduling that is extension of lottery
scheduling supports modular resources

management

 Behave differently for different computational models

 User who draws less lotteries automatically less chances to get

resources

Round Robin

 Quantum time is the main characteristic in RR that
is allocated to each process

 Behave good for short CPU burst

 Follow the scheme of First Come First Served

 Easy to understand

 Also used priority that is combination of running
time and arrival time

 Unfairness problem arises with different processes with different
length

 Can occur more context switches due to short quantum time

 [8] M. Shreedhar and G. Varghese, “Efficient fair queuing using deficit
round-robin,” IEEE/ACM Trans. Netw., vol. 4, no. 3, pp. 375–385, Jun.
1996.

[9] S. Svr, “Process scheduling,” 1980.

[10] A. Silberschatz, P. B. Galvin, G. Gagne,"Operating system
concepts," (Vol. 4). Reading: Addison-Wesley, 1998.

 [11] S.C. Mana,"Recourse Management Using a Fair Share Scheduler,"
International Journal of Computer Science and Security (IJCSS),vol.6,
 pp. 29-33, 2012.

[12 E. Bolker and Y. Ding," On the performance impact of fair share
scheduling," In Int. CMG Conference , pp.71-82, 2000.

 [13] C. Waldspurger and W. Weihl, “Lottery scheduling: Flexible
proportional-share resource management,” Proc. 1st USENIX Conf, vol.
19, pp. 1–11, 1994.

 [14] G.J. Henry,"The unix system: the fair share scheduler," AT&T Bell
Laboratories Technical Journal, 63(8), pp. 1845-1857, 1984.

 [15] T. Kimbrel, B. Schieber, and M. Sviridenko, “Minimizing migrations in
fair multiprocessor scheduling of persistent tasks,” J. Sched., vol. 9, no.
4, pp. 365–379, Aug. 2006.

[16] C. A. Waldspurger and W. E. Weihl, “Stride Scheduling : Deterministic
Proportional-Share Resource Management,” 1995.

 [17] K. Jeffay, F.D. Smith, A. Moorthyand J. Anderson,"Proportional share
scheduling of operating system services for real-time applications," The
19th IEEE Proceedings In Real-Time Systems Symposium,pp. 480-
491,1998.

[18] D. Petrou, J. W. Milford, and G. A. Gibson, “Implementing Lottery
Scheduling : Matching the Specializations in Traditional Schedulers
Implementing Lottery Scheduling : Matching the Specializations in
Traditional Schedulers,” In USENIX Annual Technical Conference,
pp.1-14, 1999.

[19] D. H. J. Epema and J. F. C. M. de Jongh, “Proportional-share scheduling
in single-server and multiple-server computing systems,” ACM
SIGMETRICS Perform. Eval. Rev., vol. 27, no. 3, pp. 7–10, Dec. 1999.

[20] C.-S. Shih, J.-W. Wei, S.-H. Hung, J. Chen, and N. Chang, “Fairness
scheduler for virtual machines on heterogonous multi-core platforms,”
ACM SIGAPP Appl. Comput. Rev., vol. 13, no. 1, pp. 28–40, Mar.
2013.

[21] D. Choffnes, M. Astley, and M. J. Ward, “Migration policies for multi-
core fair-share scheduling,” ACM SIGOPS Oper. Syst. Rev., vol. 42, no.
1, p. 92, Jan. 2008.

[22] M. cluster Suite.,
Http://www.clusterresources.com/pages/products/moabcluster-, and M.
website. Suite.php, “No Title.”,2008

[23] E. Hoque and T. Dey, “Comparing Lottery and EEVDF Scheduling
Algorithm for Real-time Applications,” Hoque, E., & Dey, T. (2009).
Comparing Lottery and EEVDF Scheduling Algorithm for Real-time
Applications. Charlottesville, VA: University of Virginia, Department of
Computer Science School of Engineering and Applied Sciences.2009.

[24] D. Zepp, "Lottery scheduling in the Linux kernel: A closer look." PhD
diss., California Polytechnic State University, San Luis Obispo, 2012.

[25] D. G. Sullivan, R. Haas, and M. I. Seltzer, “Tickets and currencies
revisited: extensions to multi-resource lottery scheduling,” Proc. Seventh
Work. Hot Top. Oper. Syst., pp. 148–152, 1999.

[26] H. Zhong, K. Tao, and X. Zhang, “An Approach to Optimized Resource
Scheduling Algorithm for Open-Source Cloud Systems,” 2010 Fifth
Annu. ChinaGrid Conf., pp. 124–129, Jul. 2010.

[27] M. Kawser, “Performance Comparison between Round Robin and
Proportional Fair Scheduling Methods for LTE,” Int. J. Inf. Electron.
Eng., vol. 2, no. 5, 2012.

[28] P. R. Mohanty, P. H. S. Behera, K. Patwari, M. Dash, and M. L.
Prasanna, “Priority Based Dynamic Round Robin (PBDRR) Algorithm
with Intelligent Time Slice for Soft Real Time Systems,” vol. 2, no. 2,
pp. 46–50, 2011.

 [29] S. Hiranwal and D.K. Roy,"Adaptive round robin scheduling using
shortest burst approach based on smart time slice," International Journal
of Computer Science and Communication, pp. 319-323, 2011.

 [30] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A.
Goldberg, “Quincy : Fair Scheduling for Distributed Computing
Clusters,” pp. 261–276, 2009.

[31] J. Nieh, C. Vaill and H. Zhong," Virtual-Time Round-Robin: An O (1)
Proportional Share Scheduler," In USENIX Annual Technical
Conference on General Track , pp. 245-259, 2011.

[32] C.S. Shih, J.W. Wei, S.H. Hung, N. Chang and J.Chen," A VM-aware
fairness scheduler on heterogenous multi-core platforms," In
Proceedings of the 2012 ACM Research in Applied Computation
Symposium, pp. 409-415.2012.

