
The Comprehensive analysis and Evaluation of

Physical join operators in Relational Database

Ashfaq Ahmed

 Department of Computer Science

 University of Management and Technology

 Lahore, Pakistan

ashfaq.ahmed024@gmail.com

Dr.Muhammad Shoaib Farooq

Department of Computer Science

 University of Management and Technology

Lahore, Pakistan

Shoaib.farooq@umt.edu.pk

Muhammad Ishaq Raza

Department of Computer Science

University of Management and Technology

Lahore, Pakistan

ishaq.raza@nu.edu.pk

Adnan Abid

 Department of Computer Science

 University of Management and Technology

 Lahore, Pakistan

Adnan.abid@umt.edu.pk

 Ali Raza

 Department of Computer Science

 University of Management and Technology

 Lahore, Pakistan

 aliirazii@gmail.com

Abstract— Join is a most significant operation in the

relational database that provides the combination of two or

more relation based on a common key. Join is most

expensive operation and an efficient development will

increase the performance of many database queries. There

are three common join algorithms, nested loop, hash and

sort-merge join. SQL server supports three type of join

algorithms .In this research, we propose the taxonomy of

joins with our possible sub-topics which cover physical join

operators. The aim of this research is the evaluation of

physical join operators for query optimization. Three major

types of join methods were investigated for query optimizer.

The optimizer determines the best joining method and builds

an optimized plan for query execution. The optimizer

evaluates and analyzes the joins operator type, a number of

rows in table and indices on the table column when it picked

the best plan. Every join method has its own advantages and

disadvantages, and it’s difficult to say that which one is the

best, based on different circumstances. The optimizer will

decide to choose best join algorithm depends on the data

statistic, indexes, and demographics if any of them are

available. Our research work can help find out what join

methods are to be adopted for best performance with the

lowest cost.

Keywords— Joins, logical operators, physical join, operation,

SQL

I. INTRODUCTION

Join is a most significant operation in a relational database that

provides the combination of two or more relation based on a

common key. Join is most expensive operation and an

efficient development will increase the performance of

numerous database queries. There are three common join

algorithms, nested loop, hash and sort-merge join. SQL server

supports three type of join algorithms [30] .

A join can be multi-way or two-way [1].A two-way join is a

combination of two relation and multi-way when joined more

than two relations in a relational database [1]. A join among n

relations normally executed as a sequence of (n-1) two- way

relation [3]. Join is very important as it is used in most of the

queries in the database [11]. In SQL, join keyword is used to

joining two or more table [13].

Joining more than two tables: When the number of table

increase by two or more then in this condition we have to use

the minimum number of joins and this use of joins is largely

dependent on the number of tables. When we have n number

of tables then we need (n-1) number of joins [10].

Joining Conditions:Join query operation have relation operator

including these (=, =!>, <), conditions and these are used to

compare the table attributes also known as columns. These

conditions are called join conditions [11]. For the execution of

the join, database application combined pair of a dataset and

mailto:ashfaq.ahmed024@gmail.com
mailto:ishaq.raza@nu.edu.pk

each dataset belongs to each one table which has one data.

This is how joining conditions are satisfied.These joining

conditions are optional but only in certain conditions [11].

In more than one table when we process the join query, then

SQL machine merge the two table which is solely based on the

joining conditions. Then it matches the columns from both

tables and then a new resultant table is created of match

results. The SQL machine carries on the procedure with every

table until the required join output is not reached. The SQL

optimizer explains the order which is based on the joining

conditions and every available statistics for the table and

indexes on the table [2].

R1 ⋈c R2 =σ (R1×R2)

Lastly with reference to join condition, specifically talking

about WHERE part of joins can have a new condition which is

going to address column of the single table in that address.

The conditions specified can return most records when the

query is done using join operation [2].

Join Operation: The join operation play a significance role for
any relational database with two-way or multi-way relation, as
it enables us to solve relationships between different relations
[11].The general syntax of join is R ⋈c S [37].

The rest of the paper is organized as follows: Section II consist
of literature review, Section III consist of taxonomy of physical
join operators, Section IV

II. LITERATURE REVIEW

In the recent years, people have tried to develop join which are

efficient. The following are the join method: nest loop join,

sort-merge and hash join as the efficient and these strategies

also compute the equi join and non equi join of two relations.

The sort-merge join method was dominantly used in early

relational database systems[32].There are two joins which are

specifically designed to overcome the disk I/O overhead

related to general has-base join, the two joins are Grace and

Hybrid hash joins [32] [20]. Shatdal et al.[22] Explained

methods for an increase in the performance of hash join

relevant to cache [23].

MISHRA et al.[31] In this paper different type of

implementation techniques and join operators are surveyed.

These techniques are classified based on how they divide rows

from different tables. Some want that one rows compared to

be all the rows from other relation.in further ,some join

methods require implicit partitioning while other are explicit.

Barber et.al [38] analysis the random access hash join

characteristics, and renew the non-partitioned hash join,

present a variants of partitioned joins in which make only the

partitioned, for large outer table this is more efficient than

partitioned joins. Blanas et.al [21] this paper focused on the

analysis of hash join algorithms regarding recent multi-core

processor in the environment of main memory. This paper

presents execution of hash joins in the main memory of

DBMS and the operations among these hash joins are also

discussed. More complex queries related to processing is

considered for future work and the combined impact of load

balancing, synchronization cost, computation, and cache

behavior.

Kitsuregawa et al. [33] introduce GRACE hash join algorithm

and more refinements of this algorithm have been proposed

for the sake of avoiding I/O through keeping as numerous

intermediary partitions in main memory as

possible[18][19][20]. Syrdal et al. [7] calculate the joins cost

that intended to guess the extent of discontinuity of audible

explain by the combination of two particular units.

Swami [9] Produce result of optimization of large join queries

based on combinatorial and heuristic technique. Yang et al.

[12], compare the performance of all types of join methods

and provide opportunity to choosing the best one based on

performance and cost.

Blanas et al. [4] were the start to evaluate that partitioned-join

working slow just as non-partitioned join specifically on hyper

threaded machine.CAT and CHT can be apply both non-

partitioned and partitioned join. Proposed a portioned SQL

join that reduced inter-stock reads [6]. Recently a latch-free

hash table implant and design for scalable NUMA-aware at

develop stage. It is very easy hash join to a series of DIRA

lookups will develop the hardware acceleration simpler [5]

[3].Chen et al.[24] apply hash join algorithm to improve cache

performance through perfecting method in CPU.We

implements a general model for overcome the complexities

successfully include with hash join algorithm. Balkesen et

al.[25] Explained and compared the job processing of main

memory, multicore and parallel join algorithms, which focus

on radix-hash and sort-merge join. As the experimental study

show that approaches relevant to sort-merge in comparison

with radix-hash join only when huge information included,

radix-hash join showed superiority.

Schneider et al. [26] this paper is based on comparison of

results between hash join and sort merge joins and finally

summarized that hash join is better if memory was limited. In

parallel database systems hash join was also the main choice

[27].Hemalatha et al [28] this paper performed the analysis of

hah join. Nested loop join, sort-merge methods using random

record generation techniques and display the result considered

that nested loop was most expensive join techniques due to its

number of iterations.

Yang et al.[8] survey of join methods and shows the believe
that no intensely performance improvements in three main
methods hash ,nested ,sort-merge in relational database.in
relational database the performance improvements of join in
future lie in more radical approach, join index, parallel join and

layer database. Yuan et al.[31] this paper explore the map
reduce framework considered in terms of optimization for
multicore CPU relevant to hash , hash join relevant to partition
is involved and hash join without any partition is also involved.
Firstly develop algorithm for hash join with map reduce
environment on multicore CPU in partition phase, and then
build and probe phases. Chen et al.[32] In this article,
implement two types of joins which are sort merge and block
nested joins. Experimented result shows that sort merge
algorithm outperform than block nested loop join on execution
time in term of dissimilar amount of buffer with similar result
after join.

III. THE TAXONOMY OF PHYSICAL JOIN OPERATOR

There are three main type of join methods, nested loop, hash

and sort-merge join and variations of these join methods are

evaluated, in addition Product join and Exclusive join were

investigates in this taxonomy. SQL server supports three type

of join methods [30]. The Figure 1 below explains joins

methods with its variations.

Figure 1.Taxonomy of physical join operators

Join methods: Join strategies is the mechanism for joining the

two or more tuple sources. Based on statistical analysis the

optimizer chooses the best join algorithm with the minimum

estimated cost. We are going to discuss join methods in detail

in the sub sections below.

1. Nested loop

Nested loop join is the easiest way of implementing a join

[15].As the name recommends, nested loop join contains two

or more loops that are nested into each other. In specific,

assuming two relations the outer relation read first tuples and

compare with the each tuple of inner relation. Later that, the

next outer relation tuple is read and again matched to every

tuple of inner relation [16].The computational complexity of

nested loop join is O(n*m).Hence, nested loop join is a good

starting point for comparison, thus nested loop join is brute-

force strategy for a join [16].The nested loop join is hardly

applicable for huge volume of data, because of its high

complexity. However, it contains great potential regarding

parallel execution especially for new hardware which makes it

still considerable. The optimizer choose nested loop joins to

execute another join in the following conditions.

 It is possible to drive inner table from the outer table.

 The amount of data is low enough to make nested

loop join technique efficient.

Nevertheless, Teradata takes advantage of its index structure,

“nested loops join “is enhance version of nested join in order

to make nested loop optimize for selection, the following

conditions must be fulfilling.

 The joining condition is based on equivalence.

 For single table the join column is unique index.

 For another table join column is any index.

1.1 Block-Nested-Loops Join

Block nested loop is improving version of nested loop join

that reduce I/O cost. Specifically when considering the access

gaps.it is a good way to design algorithms for a well I/O

behavior.it is more efficient when considering nested loop join

to take advantages of the latent hard disk through combining

rows that are operate into chunks of rows ,known as

blocks[16].The block size depends on the number of available

main memory. For comparison the outer relation a take more

space as possible, whereas the inner relation B can read page

by page. Already fetched page can be used more efficiently

with this algorithm. For further enhancement considering the

number of rows in both relations. The outer loop relation

should be smaller one, because of maximum page missing

occur in outer loop relation and rows of the inner relation are

read sequentially.

The block nested loop computational complexity is still O

(n*m), because still every row of one relation is compared to

every row of other relation [16]. To avoid some unnecessary

comparison one way is to represent hash join [16].

1.2 Naive nested loop join

In this situation, the inner relation has no index that do not

fulfill the join column required criteria in the nested loop join

operator [34]. In this case ,SQL server will hardly choose

nested loop join and instead of this tends to resort hash joins,

but this is might be display on smaller join column that have a

small data type or smaller data-set [34].

1.3 Index nested loop join

In this situation the inner relation tuples are compared using

SEEK operator done by an index that is pre-built on latent

(underlying) data-set [34]. It provide you the best nested loop

performance with the required data-set [34]. This is clearly

what you require your nested loop join operator.

1.4 Temporary index nested loop join

In this situation ,SQL Server to create the temporary index on

the latent(underlying) tables in order to fulfill the nested loop

join criteria [34].SQL will necessarily decide the cost of

creating temporary indexing to perform nested loop join

operation more significance than running cost of naive nested

loop join or other kind of join operation[34]. The missing

index that is being temporarily creating by SQL to fulfill the

join kind can be identify in the misplace index:

DMVs (such

assys.dm_db_missing_index_details and sys.dm_db_missing_

index_groups) [34].

2. Hash Join

Today’s Hash join is a most frequently used in commercial

database system to efficiently implement equijoins, hash join

extensively studies over the past few years[17][18][19][20].

Hash join is simplest algorithm, the algorithm divides in two

phases, first phase builds a hash table on the smallest relation

and then using tuples of larger relation probe this hash table to

find matches.

Conversely, the random access pattern inherits in the hashing

process have slight temporal locality or spatial locality. When

the available main memory for hash join is too small to hold

the hash table and build relation, the hash join algorithm

suffers too much random disk accesses. Grace join algorithm

used to avoid this problem [17].

This algorithm known as “hash join “gets its name from “hash

table “the fact that one smallest table build as hash table and

possibly matched tuples from second relation(table) are

searched through hashing using the smaller table[14].

Commonly the optimizer will initially identify a smaller table,

then sort it through join attribute row hash order. The

performance of hash join algorithm will be best if the smaller

table is surely smallest table and can fit in the memory.

Otherwise the database partition the row sources and join

proceeds partition by partition. Then by doing the binary

search of smaller table for a match the larger table is

proceeded one row at a time [14].hash join is also based on

equi-join. Hash join uses a dynamic hash match function and

hash table to match tuples. The complexity of hash join

algorithm is O (N*hc+M*hm+J).

How the optimizer considers a hash join? Optimizer consider

the hash join when the following conditions are true:

 A large fraction of a small table can be joined or a

relatively larger quantity of data must be join.

 The join is based on equi-join.

A hash join is most cost effective if the smaller table is surely

smallest table and can fit in the memory. In this case the

performance of hash join algorithm will be best [14]. In

general hash join performance is batter then sort-merge joins

due to sorting is most expensive.

Hash join is feasible for the relations (table) having no index

or huge table has indexed [36].it is best for the case in which

huge table having no indexing and execute the parallel query

and return the best performance [36]. Most of the experts says

that its extensive lifter join [36]

2.1 In-Memory Hash Join

This type of hash join initially compute or scans the whole

small input (build input) and then build a “hash table “in

memory [29]. Every tuple put into a hash bucket based on a

hash value calculated for a hash key. If the whole build input

is lesser then the current available memory, then all tuples can

be inserted into the hash table. This phase (build) is tracked by

the probe phase. The whole probe input is calculated or

scanned one tuple at a time and for every probe tuple

computed hash key value, the scanned related hash bucket and

produced all the matches [29].

2.2 Grace Hash Join
In this type if the smaller data set does not fit into main

memory, a hash join proceeds in few steps known as grace

hash join. Every step has a probe phase and build phase.

Firstly the whole probe and build inputs are used and then

database partition row sources using hash function based on

hash key into numerous records[29].if we use the hash

function on hash keys assuredly that joining data set must be

in same pair of record or files. So the task of joining two big

inputs reduced to many but lesser cases of same tasks, then

hash join applied to each partitioned pair [29].

2.3 Recursive hash join

In this kind, if the build input is very huge that inputs for an

external merge would require multiple merge partitioning

steps and partitioning levels. Additional partitioning steps are

used for specific partitions if only some of the partitions are

large [29]. To make partitioning steps as fast as possible

asynchronous I/O process are used in which single thread can

keep so much disk drive busy [29].

2.4 Hybrid hash-join

The hybrid hash join is a clarification of grace join algorithm

in which take more benefit of extra available memory.

Through the phase of partitioning, the hybrid hash join used

the extra memory for two goals [35].

 To contain the present resulted buffer page for every

partitions.

 To contain a whole partition in-memory ,is called

“partition 0”

Because of partition 0 is never read and written from disk,

hash join normally execute some I/O operations than the grace

join[35].One thing is notable that this algorithm is memory-

delicate, since there are two calculating demands for memory

first the hash table for potation 0 and resulted buffer for other

partitioning. Picking excessively big data could be the cause

the algorithm to recourse, because of non-zero partition is

excessively big to fit into memory [35].

3.0 Product Join

This is the most simple and basic join technique. To find a

match among two relation based on join condition which is

not based on equality (>, <, <>) [14].the reason why this is

known as product join due to it number of comparisons

needed is the “product” of the number of tuples of both

relations. For example table R has 20 tuples and table S has 25

tuples, then it would needed 20 x 25=500 comparisons to

identify the matching tuples. If the WHERE clause is not used

then it will cause a cross join or Cartesian join which will

return all the combination of tuples from both relation like

above example 500 tuples are returned as a result[14].The

vendor like IBM and oracle referred to as nested loop join

which also make sense when it mapping to algorithms[14].this

is known as a product join in Oracle, IBM and Microsoft but

in Teradata it is known as the counter part of nested loop join

in the further RDBMS[14].

4.0 Sort Merge Joins

Figure 2.show the sort merge operation.

The sort merge join integrate two sorted list like a zipper.it

require both row sources of the join must be sorted through

join predicate. A sort merge may be performed well when the

selectivity of join column is low or clustering factor is very

high, and there is no index on join attributes (columns). If the

outer join cannot drive from preserve outer relation to inner

relation, it cannot be used a nested loop or hash joins .In this

scenario sort merge outer join are used [1].The optimizer uses

the sort merge from the following scenario. If the nested loop

join is inefficient due to its large data volume, a hash join

when the hash table not fit into memory, sort merge can be

more cost-effective than hash join [1].

5.0 Merge Join

The merge join is more efficient join method. The optimizer

choose merge join when the join conditions are based on

equality (=). There is a precondition although the two relation

must be sorted based on join attributes in earlier.

In an interleaved way, both relations only required to be

scanned once [14]. The merge join is not essentially always

superior to product join, because the fact that merge join is

required sorting. If both relations are very large, very huge

effort can be required for sorting [14].

 The time complexity of merge join is

O(N+M)

 On the join key both inputs are sorted

 Must be based on equality operator

 Outstanding for very huge relation

The merge join feasible for the relation having join columns

based on an index [36]. The index also non-clustered or

clusterd.it is the best join in this case because it required an

index for both tables [36].so it’s presorted and easily

compared and give the resultant data.

6.0 Exclusion Join

This join technique is used to identify the non-matching rows.

The optimizer will choose the exclusion join when the query

contains “EXCEPT” or “NOT IN”. Exclusion join is behave

like same as anti-join. In fact this type of join can be

completed as either product join or Merge join[14].In general,

exclusion join is based on set subtraction operation, and

(TRUE,UNKNOWN,FASE) three value logic will be used if

the compression is based on temporary result set or null able

columns[14].

2 EVALUATION OF PHYSICAL JOIN OPERATOR

Case Study:Consider the following tables and statistics which

are part of a student system.

Student (RollNo, Name, DegreeID, BatchID, …..);

Attendance (RollNo, CourseCode, Semester, AttFlag, …..);

Block Size (B) = 32 KB; Available Memory (K) = 100

Blocks;

Assume that there are 1200 matching rows in Attendance table

per Student table row.

Table Name Row

Count (r)

Row Width

(R) (in

bytes)

Table Size

(b)

(in Blocks)

Student

Attendance

128,000

1,280,000

256

256

1,000

10,000

Example of high selectivity query#1 that returns small

number of rows:

SELECT * FROM student INNER JOIN attendance ON

student.rollno=attendance.rollno

WHERE student.rollno IN (1, 2, 3, 4, 5)

Example of low selectivity query#2 that returns large number

of rows:

SELECT * FROM student INNER JOIN attendance ON

student.rollno=attendance.rollno

The best/worst case scenarios of the following:

Nested loop join: We are explaining two cases of nested loop

join, best and worst in the coming sub section.

Best case scenario: It is efficient for high selectivity query

(i.e. a query that returns small number of rows).When outer

table has small number of qualifying rows and inner table has

large number of qualifying rows.

I/O Cost = O (outer table qualifying rows * inner table blocks)

= O (Qualifying rStudent * bAttendance)

= O (5 * 10,000)

= 50,000

Worst case scenario: When outer table has large number of

qualifying rows.

I/O Cost = O (bStudent * bAttendance)

= O (1000 * 10,000)

= 10,000,000

Sort merge join: We are explaining two cases of sort merge

join Best and Worst in the coming sub section.

Best case scenario: It is efficient for low selectivity query

(i.e. a query that returns large number of rows).

When both operand tables are pre-sorted.

I/O Cost = O(bStudent + bAttendance)

 = O(1000 + 10,000)

= 11,000

Worst case scenarios: When both operand tables are not pre-

sorted.

I/O Cost = O (bStudent * log(bStudent /k)) + O (bAttendance *

log(bAttendance /k)) + O(bStudent + bAttendance)

 = O (1000 * log2(1000/100)) + O (10,000 *

log2(10,000/100)) + O (1000 + 10,000)

 = 80,722

Hash join: We are explaining two cases of Hash join Best and

Worst in the coming sub section.

Best case scenarios: It is efficient for low selectivity query

(i.e. a query that returns large number of rows).When

available memory is sufficient to store at least one of the

operand table.

I/O Cost = O(bStudent + bAttendance)

 = O(1000 + 10,000)

= 11,000

Worst case scenarios: When available memory is not

sufficient to store at least one of the operand table (smaller).

I/O Cost = O (bStudent * log2(bStudent /k)) + O (bAttendance *

log2(bStudent /k)) + O(bStudent + bAttendance)

 = O (1000 * log2(1000/100)) + O (10,000 *

log2(1000/100)) + O (1000 + 10,000)

 = 47,542

Table 47 shows the performance of physical join operators in

term of I/O.

Table 1: Physical joins methods input output cost

Table 1 shows the performance of physical join operators in

term of I/O.

Figure 3: Performance comparison of Physical join

operators
In above figure 3 shoes the performance of physical join

operators in term of I/O cost.

Note: When there is a significant difference between table

sizes then hash join performs well as compared to sort merge

join. Otherwise when there is no significant difference

between table sizes then the performance of both sort merge

and hash join will be same.

3 CONCLUSION

In this research, we examined one of the core topics in the
Database system which includes logical and physical join
operators. The physical join operators were investigated its
performance using a case study. Physical join operator’s
performance was explained and we found that each physical
join operator is better than the other in some scenario. So this
will help the optimizer for choosing the best approach while
performing the execution. The optimizer determines the best,
build an optimized plane for running the query. The optimizer
evaluates and analyzes the joins operator type, a number of
rows in table and indices on the table column when it picked
the best plan.

Join

methods

Best case Worst case

Nested

loop join

I/O cost=50,000 I/O cost =10,000,000

Hash join I/O cost=11,000 I/O cost=47,542

Sort-merge

join

I/O cost=11,000 I/O cost=80,722

• Nested loop join is considering to chosen for the small
amount of data or smaller tables and if it is feasible to do seek
index in the inner relation to confirming better performance.

• Merge join is considering to be excellent performance
when the larger table is pre-sorted data.it only require only one
comparisons and does not require a lot of comparison.

• Hash join is considering to be suitable for larger table
having no indexing. It require a lot of memory, lesser I/O but
require more CPU.

• The Exclusion join method is used to identify the non-
matching rows. The optimizer will choose the exclusion join
when the query contains “EXCEPT” or “NOT IN”.

• A Sort Merge may be performed well when the
selectivity of join column is low or clustering factor is very
high, and there is no index on join attributes (columns).

For future direction we recommend that Optimized algorithm
should be designed to handle physical join operators.

ACKNOWLEDGMENT

I am very thankful to department of computer science at
University of Management and Technology for providing me
peaceful and ambient environment. I am also very thankful to
all the reviewers who took time out of their busy schedule for
reviewing this article.

REFERENCES

[1] Mishra, P., & Eich, M. H. (1992). Join processing in relational

databases. ACM Computing Surveys (CSUR), 24(1), 63-113.

[2] Oracle® Database SQL Reference 10g Release 1 (10.1),
Documentation.
https://docs.oracle.com/cd/B12037_01/server.101/b10759/toc.htm
 .Accessed-05 November 2015.

[3] MACKERT, L F, AND LOHMAN, G. M 1986 R* Optimizer:
Validation and performance evaluation for distributed queries. In
Proceedings of Conference on Very Large Data Bases, pp. 149-159,

[4] Blanas, S., Li, Y., & Patel, J. M. (2011, June). Design and evaluation of
main memory hash join algorithms for multi-core CPUs. In Proceedings
of the 2011 ACM SIGMOD International Conference on Management
of data (pp. 37-48). ACM.

[5] Lang, H., Leis, V., Albutiu, M. C., Neumann, T., & Kemper, A. (2015).
Massively parallel NUMA-aware hash joins. In In Memory Data
Management and Analysis (pp. 3-14). Springer International Publishing.

[6] Mane gold, S., Boncz, P. A., & Kersten, M. L. (2000, September). What
happens during a join? Dissecting CPU and memory optimization
effects. In Proceedings of the 26th international conference on very large
data bases (pp. 339-350). Morgan Kaufmann Publishers Inc.

[7] Syrdal, A. K., & Conkie, A. (2005, September). Perceptually-based data-
driven join costs: comparing join types. In INTERSPEECH (Vol. 5, pp.
2813-2816).

[8] Yang, Y., & Singhal, M. (1997). A comprehensive survey of join
techniques in relational databases. Computer and Information Science
TR, 48.

[9] Swami, A. (1989, June). Optimization of large join queries: combining
heuristics and combinatorial techniques. In ACM SIGMOD Record
(Vol. 18, No. 2, pp. 367-376). ACM.

[10] Pratt, Phillip J (2005), A Guide to SQL, Seventh Edition, Thomson
Course Technology, ISBN 978-0-619-21674-0

[11] Ramez Elmasri, Shamkant B. Navathe, Fundamentals of Database
Systems, Edition 5, Addison Wesley Pub Co Inc, 2010, ISBN
0136086209, 9780136086208, Page 183 – 184

[12] M. Tamer Özsu; Patrick Valduriez (2011). Principles of Distributed
Database Systems (3rd ed.). Springer. p. 46.ISBN 978-1-4419-8833-1.

[13] http://www.studytonight.com/. Accessed-04 march, 2016.

[14] terdata online documentation join stratgies
http://teradata.weizheng.net/2012/02/join-strategies-in-
teradata.html. Accessed 06 December 2015

[15] Priti Mishra and Margaret H. Eich. Join Processing in Relational
Databases. ACM Computing Surveys , 24(1):63{113, March 1992.
(cited on Page 13, 14, 15, 16, 17, 18, 38, and 68).

[16] David broneske,”one the impact of hardware on relational join
processing” ,Mastrer thesis University of Magdeburg School of
Computer Science ,agust 19,2013.

[17] Kitsuregawa, M., Tanaka, H., & Moto-Oka, T. (1983). Application of
hash to data base machine and its architecture. New Generation
Computing, 1(1), 63-74.

[18] SHAPIRO, L. D. 1986. Join processing in database systems with large
main memories. ACMTrans.Datab. Syst. 11, 3, 239–264.

[19] NAKAYAMA, M., KITSUREGAWA, M., AND TAKAGI, M. 1988.
Hash-partitioned join method using dynamic destaging strategy. In
Proceedings of the 14th International Conference on Very Large Data
Bases (Los Angeles, CA). 468–478.

[20] ZELLER, H. AND GRAY, J. 1990. An adaptive hash join algorithm for
multiuser environments. In Proceedings of the 16th International
Conference on Very Large Data Bases. (Brisbane,
Queensland,Australia). 186–197.

[21] Blanas, S., Li, Y., & Patel, J. M. (2011, June). Design and evaluation of
main memory hash join algorithms for multi-core CPUs. In Proceedings
of the 2011 ACM SIGMOD International Conference on Management of
data (pp. 37-48). ACM.

[22] SHATDAL, A., KANT, C., AND NAUGHTON, J. F. 1994. Cache
conscious algorithms for relational query processing. In Proceedings of
the 20th International Conference on Very Large Data Bases
(Santiagode Chile). 510–521.

[23] MANEGOLD, S., BONCZ, P. A., AND KERSTEN, M. L. 2000. What
happens during a join? Dissecting CPU and memory optimization
effects. In Proceedings of the 26th International Conference on Very
Large Data Bases (Cairo, Egypt). 339–350.

[24] Chen, S., Ailamaki, A., Gibbons, P. B., & Mowry, T. C. (2007).
Improving hash join performance through prefetching. ACM
Transactions on Database Systems (TODS), 32(3), 17.

[25] Balkesen, C., Alonso, G., Teubner, J., & Özsu, M. T. (2013). Multi-core,
main-memory joins: Sort vs. hash revisited. Proceedings of the VLDB
Endowment, 7(1), 85-96.

[26] D. A. Schneider and D. J. DeWitt. A performance evaluation of four
parallel join algorithms in a shared-nothing multiprocessor environment.
SIGMOD '89, pages 110{121, 1989.

[27] S. Fushimi et al. An overview of the system software of a parallel
relational database machine grace. In VLDB, 1986.

[28] Hemalatha, G., & Thanuskodi, K. (2010, September). Optimization of
joins using random record generation method. In Proceedings of the 1st
Amrita ACM-W Celebration on Women in Computing in India (p. 28).
ACM.

[29] [Understanding physical joins SQL online documentation.
http://www.sqlrelease.com/nested-loop-merge-and-hash-joins-in-sql-
server , Accessed May 4, 2016

[30] nested loop joins
https://blogs.msdn.microsoft.com/craigfr/2006/07/26/nested-loops-join/
accessed 27 april,2016.

[31] Tong, Y. U. A. N., Zhijing, L. I. U., & Hui, L. I. U. (2016). Optimizing
Hash Join with MapReduce on Multi-Core CPUs. IEICE
TRANSACTIONS on Information and Systems, 99(5), 1316-1325.

http://www.studytonight.com/
http://teradata.weizheng.net/2012/02/join-strategies-in-teradata.html
http://teradata.weizheng.net/2012/02/join-strategies-in-teradata.html
http://www.sqlrelease.com/nested-loop-merge-and-hash-joins-in-sql-server
http://www.sqlrelease.com/nested-loop-merge-and-hash-joins-in-sql-server
https://blogs.msdn.microsoft.com/craigfr/2006/07/26/nested-loops-join/

[32] Chen, M., & Zhong, Z. (2014). Block Nested Join and Sort Merge Join
Algorithms: An Empirical Evaluation. In Advanced Data Mining and
Applications (pp. 705-715). Springer International Publishing.

[33] understanding physical join operator , http://use-the-index-
luke.com/sql/join ,accessd accessed 30 May 2016.

[34] understanding the types of nested loop join,
http://thinknook.com/nested-loop-join-sql-server-graphical-execution-
plan-2012-03-25/ accessed 22 June 2016.

[35] DeWitt, D. J., Katz, R. H., Olken, F., Shapiro, L. D., Stonebraker, M. R.,
& Wood, D. A. (1984). Implementation techniques for main memory
database systems (Vol. 14, No. 2, pp. 1-8). ACM.

[36] understanding physical join opertaors ,
http://www.sqlserverblogforum.com/2011/10/merge-join-vs-hash-join-
vs-nested-loop-join/ ,accessed 22 June 2016.

[37] C. J. Date (2011). SQL and Relational Theory: How to Write Accurate
SQL Code. O'Reilly Media, Inc. pp. 133–135. ISBN 978-1-4493-1974-
8.

[38] Barber, R., Lohman, G., Pandis, I., Raman, V., Sidle, R., Attaluri, G., ...
& Sharpe, D. (2014). Memory-efficient hash joins. Proceedings of the
VLDB Endowment, 8(4), 353-364

