
Process Model Searching: A Corpus of Summary

Textual Descriptions

Madiha Khalid, Syed Irtaza Muzaffar Shah, Khurram Shahzad, Faisal Bukhari

Punjab University College of Information Technology, University of the Punjab, Lahore

madiha.khalid| mcsf14m018|khurram|faisal.bukhari@pucit.edu.pk

Abstract— Searching process models is a key feature of

process model repositories. The efficiency and effectiveness of

searching depends on the underlying matching techniques.

Recent studies have proposed the use of textual descriptions of

process models alongside process models, for a comprehensive

search. However, it is common for organizations to have longer

textual descriptions, consequently, the use of full length textual

descriptions may negatively affect the efficiency of matching

techniques. To overcome this problem, we advocate the use of

summary textual descriptions. This however requires, rigorous

investigations to prove the efficiency and effectiveness of the use

of summary textual descriptions over full length textual

descriptions. Conducting these studies require, a corpus of

textual descriptions of process models and corpus/corpora of

their summary textual descriptions. To fulfill these prerequisites,

in this paper we focus on, explaining the process of generating a)

a corpus of full length textual descriptions of process models, b)

corpora of summary textual descriptions, using two text

summarization algorithms. Further, we employ two basic text

matching techniques to establish that the summary descriptions

in the two corpora are different from each other and thus the

choice of the summarization technique is a non-trivial task.

Keywords—Process models; textual descriptions; text

summarization; summary textual descriptions;

I. INTRODUCTION

Increasing number of organizations are modeling their
business processes to explicitly depict the ordering and
dependencies between activities [1]. These models, formally
called process models, are useful in a number of contexts,
including sharing organizational processes to a new employee
and representing requirements of ERP systems [2]. Given that,
it is common for organizations to have a collection of hundreds
or even thousands of business processes [3], process
repositories are used to manage these collection of models [4].
A key feature of process model repositories is, searching
relevant process models for a given query process model.
However, the effectiveness of these searching techniques rely
on the underlying process matching techniques [5]. In fact,
several process matching techniques have been proposed [3, 6,
7, 8, 9, 10], which rely on the use of label features, structural
features and behavioral features of process models. However,
the effectiveness of these matching techniques is too low for
use in practice.

To address that problem, a recent study [11] have proposed
to store textual descriptions of process models in process
repositories, and use these descriptions (alongside process
models) for matching process models [12]. The study has
established that the use of textual descriptions (alongside
process models) indeed increases the effectiveness of process
model search. However, it is common for organizations to have
long textual descriptions. For instance, an Austrian bank’s
process collection has 119 textual descriptions of processes,
with an average length of 13,130 words and the longest
description has a length of 60,558 words [12]. We contend, that
the use of these full length textual descriptions will arguable
decrease the efficiency of process matching and thereby
slowdown the retrieval of relevant models. To overcome that
problem, we advocate the use of summary textual descriptions
for process matching. However, recommending the use of
summary textual descriptions for process matching requires
analyses of the tradeoff (in terms of efficiency and
effectiveness) between summary and full-length textual
descriptions. Such investigations require, a) a corpus of full-
length textual descriptions of process models, and b) corpora of
summary textual descriptions, of the same set of process
models.

Generating a corpus is a non-trivial task, because a number
of questions are associated with it, such as, what should be the
size of corpus, and what procedures should be employed to
generate the corpus? It is to be noted that the idea of generating
corpus is not new. In fact, corpora has been developed for
various fields of research such as, information retrieval [13],
process matching [14], and social network detection [15, 16]
etc. In this study we focus on, a) explaining the process of
generating a corpus of full length textual descriptions of
process models, b) explaining the process of generating
corpora of summary textual descriptions of process models,
using two auto summarization algorithms. Note, we focus on
generating and analyzing corpora of summary textual
descriptions of process models. It is because, we believe that
analyzing and recommending the use of summary textual
descriptions for process matching (instead of complete textual
descriptions) formulates a whole separate research problem.
Furthermore, we apply two basic techniques, n-gram overlap
[17] and Longest Common Subsequent (LCS) [18] to establish
that two auto summarization algorithms generate different
summaries and therefore a further investigation is required to
establish the choice of text summarization algorithms.

The loan application process at ACME Inc. starts when an
employee submits application for loan. Finance department
receives that request. Finance department then evaluates
person's credit score if it finds that the person is not eligible
for loan then the loan request will be rejected and the
employee receives a rejection notification. On the contrary,
if the finance department finds the person eligible for loan
it will evaluate the person's misc. amount of loan and sends
the loan acceptance notification to customer.

Summary 1 Summary 2

The loan application process
starts when finance
department receives the loan
request from employee. It
evaluates the application and
send back the decision.

At ACME Inc., if an
employee seeks loan he/she
submits a loan application
that is evaluated by finance
department. Finance
department accesses loan
seeker’s credit score and
sends the acceptance or
rejection notification as per
the assessment result.

The rest of the paper is organized as follows: the section II
gives an illustration of the issues associated with generating
summary textual descriptions. Section III provides the details
of the generated corpus. Section IV discusses the experimental
setup and results. Finally the paper concludes in section V.

II. MOTIVATING EXAMPLE

This section introduces the background to this work by
providing an example process model, its complete textual
description and two possible summary textual descriptions.
Fig. 1 and 2 shows an example loan application process model
and its equivalent full-length textual description, respectively.
The example process model, shown in Fig. 1, is designed in
Business Process Modeling Notation (BPMN) [19] – the de
facto standard process modeling language and Signavio [20] –
an online process modeling tool that follows most of the
process modeling guidelines [21]. The model contains, one
pool (labeled as ACME Inc.), two XOR gateways (represented
by a diamond sign with a X sign inside it), one start event
(represented by a circle), one end event (represented by a solid
circle), two lanes (labeled as finance department and
employee), and 9 activities (labeled as, submit application for
loan, receive request, etc.).

Fig. 1. An example of notation based business process model designed using

BPMN.

Fig. 2. Full length textual description of the example process model.

Fig. 3. Summary textual descriptions of the example process model

It is worth noting that there is a clear correspondence
between the process models presented in Fig. 1 and its
corresponding textual description presented in Fig. 2. For
instance, from process model as well as from the textual
description it can be seen that the process belongs to ACME
Inc., and it starts when an employee submits an application for
loan. Similarly, it can also be observed that the process ends
with a rejection notification or acceptance notification.

In order to demonstrate that more than one summary
descriptions can be generated from one input textual
description, two researchers were asked to independently
generate summary descriptions of the complete textual
description presented in Fig. 1. The generated summary textual
descriptions, produced by the researchers, are presented in Fig.
3. Two key observations can be made about the summary
descriptions produced by the researchers, despite the fact they
share same baseline textual description: a) the two summary
descriptions are different from each other, b) the length of two
descriptions are different i.e. the length of summary 1 is less
than that of summary 2. It is thus unclear, which one of the two
textual descriptions truly represent the summary of the full
length textual description. Similarly, it can be demonstrated, a
single researcher can produce difference summaries of the
same textual description on different occasions. This justifies
the use of automatic text summarization algorithms while
generating the summary textual descriptions.

III. THE CORPORA

In this section, we explain the process of generating a
corpus of full-length textual descriptions and corpora of
summary textual descriptions.

A. Full length Textual Descriptions

We have access to a collection of 669 process models that
are designed using BPMN – the de facto process modeling
language. The collection is modeled in Signavio – the most
recommended process modeling tool [21], and it is available as
JSON and PDF formats. The choice of the collection is
motivated by the fact that the collection contains process
models with diverse label and structural features [14]. More
precisely, the collection includes 150 Original (O) process
models and three other handcrafted variants of these models,
Near Copy (NC), Light Revision (LR) and Heavy Revision
(HR). The variants are crafted by employing a systematic and
rigorous procedure that we deem necessary to impart diversity
in labels and structure of models with an aim to challenge the
abilities of process matching techniques. The NC variant of a
model is generated by slightly changing the formulation of
each label of the model, whereas the LR variant is generated by
substantially changing the formulation of each label of the
model. HR variant is generated by changing the formulation of
each label as well as the control flow between activities of the
models.

The smallest model in the collection contains 11 activities
and the largest model contains 54 activities. Another unique
feature of the collection is, the models included in the
collection follow most of the process modeling guidelines,
presented by Mendling et al. [22]. For instance, there is no
process model in our collection that contains a split gateway
node without a corresponding join gateway node. The human
effort involved in generated the collection can be understood
by the number of operations performed while generating model
variants i.e. a) 24092 insertion, deletion and substitution or
words were performed to generate label variants of process
models, and b) 1764 structural change operations were
performed to generate structural variants of process models.

There were two ways of generating textual description of
the collection of process models, manual or automatic [23]. A
number of factors limit the available choices. Manual
generation of textual descriptions require understanding of
BPMN, the modeling notation used for generating the
collection i.e. a user having no or limited knowledge of BPMN
may not correctly comprehend a BPMN process model and
thereby may not generate a truly representative textual
description of the model. Further, manually generating textual
description of such a large number of process models is a time
consuming and error pruned task. Also, the quality of
description is dependent on the writing skills of the involved
humans i.e. the description of the same process models may
differ from person to person.

Due to the challenges associated with the manual way of
generating textual description, the Natural Language
Generation System (NLGS) developed by Leopold et al. [11] is
used to generate textual description of 669 process models. As
far as we are aware, NLGS is the only available tool that can
automatically generate textual description of a process model.
It uses a well-established technique that takes a process model
in JSON format as input and generates its textual description.
Note, an empirical evaluation of the textual description
generated by NLGS has established that the NLGS generated

textual description is superior than the human generated textual
description, in terms of completeness, structure and linguistic
complexity [11]. The study has also established that the texts
are understandable by naïve users and effectively allow the
reader to interpret the process model semantics [11].
Furthermore, the textual description generated by the tools has
been used in previous studies for verification of process
models. We yielded a corpus of textual descriptions of 669
process models using NLGS.

B. Generating Summary Descriptions

In order to generate summary descriptions of process
models, by taking input the full length textual descriptions
generated by NLGS, we have used two widely used
summarization algorithms, TextRank [24] and LexRank [25].
A large number of natural language processing communities
rely on the performance of these two algorithms. Both of these
algorithms employ an extractive approach to generate summary
descriptions [26]. In extractive approaches, the importance of
each phrase/sentence is computed with respect to the complete
document. Subsequently, a summary description is generated
based on the importance of phrases/sentences in the text. The
key strength of the approaches that fall in this category is, they
purely rely on the content of the source description and do not
change the order of words within a phrase or a sentence i.e.
these techniques do not induce new phases/sentences that does
not exist in the source text. Below, we provide an overview of
the two summarization algorithms.

TextRank: TextRank [24] is an expansion of page rank
algorithm in which the source text is tokenized into sentences
and represented as a vertex in the graph. Subsequently, edges
between these sentences are marked on the bases of
overlapping between them. Subsequently, it iteratively
compute the scores of each vertex using graph based ranking
algorithm, until convergence. Finally, vertices are sorted on the
bases of their final scores.

LexRank: LexRank [25] first tokenize the document into
sentences and represents each sentence as vertex. Then, it adds
edges between these vertices on the bases of inverse document
frequency (idf) cosine similarity [25]. Note, we changed the
concept of inverse document frequency (idf) at the collection
level, to inverse sentence frequency i.e. log of, total number of
sentences in the process description divided by the number of
sentences in which the word occurs". Subsequently, if the
generated similarity score between two sentences is above a
certain threshold value, a value 1 is stored in respective index
of these sentences matrix and increment 1 in degree values
otherwise store 0 and no increment in degree value. Lastly,
final score of each sentence is computed using power method
followed by vertices sort.

C. Characteristics of the Summary Corpora

Table I summaries some of the main statistics of the
TextRank and LexRank generated summary descriptions. From
the table, it can be seen that the average length of the TextRank
generated summary descriptions are more than that of LexRank
generated summary descriptions (i.e. 105 > 95 for 75%
summary, 71 > 63 for 50% summary, and 34 > 30 for 25%

TABLE I. CHARACTERISTICS OF TEXTRANK AND LEXRANK GENERATED SUMMARY CORPORA

 Total Words Unique Words Stop Words

Min Max Avg Total Min Max Avg Total Min Max Avg Total

Complete Description (669 Models) 48 376 131 87772 24 121 4 2883 21 143 53 35637

Summary

Descriptions

75%

TextRank 37 321 105 70706 19 107 3 2652 14 119 41 27680

LexRank 37 273 95 63674 19 97 3 2625 15 110 38 25743

50%

TextRank 23 224 71 48031 12 72 3 2243 9 81 27 18432

LexRank 23 186 63 42738 14 74 3 2203 11 75 25 17323

25%

TextRank 8 110 34 22767 5 44 2 1591 4 45 12 8680

LexRank 8 91 30 20151 7 44 2 1499 4 38 12 8330

summary) and less than the full-length description. From the
quantity of unique words used in generating summary, it can be
seen that as the summary decreases to 25%, the number of
unique words used by TextRank are significantly more than
LexRank (total number of unique words: 1591 > 1499 and
maximum number of unique words: 74 > 44), compared to the
50% and 75% summaries. These numbers show that for
generating 25% summary TextRank algorithm uses more
unique words than LexRank.

IV. COMPUTING SIMILARITY

To compare the two corpora generated by TextRank and
the other by LexRank we rely on the use of two well-known
similarity estimation models: n-gram overlap and Longest
Common Subsequence.

A. Similarity Estimation Models

The estimation models used for similarity computation are
briefly discussed below.

N-gram Overlap: N-gram overlap is the simplest
quantitative similarity measure to compute the similarity
between two strings [27]. Historically, n-gram overlap is
widely used and proven for similarity detection in textual
documents, such as, plagiarism detection and detecting the
fraction of reused content in journalism [28, 29]. In
computational linguistics, the term n-gram refers to a
contiguous sequence of n language units, where these language
units can be letters, words or syllables. The selection on the
language unit depends upon the application. In our case we
used n-gram of words and considered uni-gram (n-gram of size
1) as most representational size of n-gram. N-gram overlap
determines the amount of n-grams that are common in a pair of
texts. The overlapping fraction using n- gram can be measured
in a number of ways, for example using Jaccard coefficient or
overlap coefficient.

Jaccard coefficient (as defined in equation 1) computes
similarity as the size of intersection of common n-grams
divided by the number of shared n-grams. Whereas, overlap

coefficient (equation 2) estimates the similarity by dividing the
size of intersection of common n-grams by the size of one of
the strings.

 

 

Where, Xn is the n-grams in first text and Yn is the n-grams
of second text.

In our experiments, a pair of summary documents are
compared using overlap coefficient. The resulting similarity
score ranges between 0 and 1. Where 0 indicates no similarity
and 1 indicates complete similarity. Since n-gram overlap
considers only fixed sized grams and does not preserve the
ordering of the grams, therefore, we have also used an order
preserving algorithm, Longest Common Subsequence.

Longest Common Subsequence: Longest common
subsequence (LCS) [18] is another widely relied upon
approach by natural language processing community. LCS uses
slightly different approach than n-gram. It represents text as
tokens of words or characters while preserving the order of the
tokens. The similarity between a pair of documents is
computed on the basis of string edit distance i.e. the number of
string operations (insert, delete, alter) required to convert one
string token into another.

In our experiments, we computed LCS between two textual
descriptions and divided the resultant value by one of the
source texts to get a normalized similarity score, called
LCSnorm.

 


B. Similarity Scores between Summary Descriptions

Table II shows the average similarity score of TextRank
generated summary descriptions with LexRank generated
summary descriptions, using n-gram overlap (unigram) and
LCS. In order to generate the average similarity scores, at first,
we created 669 pairs of summary descriptions generated by
TextRank and LexRank (TSD:LSD) by adjusting the summary
threshold to 75%. Subsequently, the similarity score of each
pair was computed using n-gram overlap and LCS. Thereafter,
the average of the 669 similarity scores and their standard
deviation was calculated for each estimation technique,
separately. Similarly, 669 pairs were generated for each of the
following: 50% summary descriptions generated by TextRank
and LexRank, and 25% summary descriptions generated by
TextRank and LexRank.

TABLE II. AVERAGE SIMILARITY SCORES BETWEEN TSD:LSD PAIR

Summary size

75% 50% 25%

Estimation Model Avg. Stdev Avg. Stdev Avg. Stdev

N-gram 0.93 0.04 0.79 0.08 0.59 0.14

LCS 0.83 0.08 0.59 0.12 0.43 0.14

The similarity score of 0.93, using n-gram overlap
represents that, an average 93% of the vocabulary used by
TextRank to generate summary textual descriptions is also used
by LexRank to generate summary textual descriptions. Note,
this higher score does not represent that the TextRank and
LexRank generated summary descriptions are 93% similar;
rather it represents that 93% of the vocabulary (unique words)
used by the two summarization algorithms, overlap. Further,
the slight variation in the standard deviation indicate the little
change in the similarity score across 669 pairs.

From the table it can be observed that, as the summary size
decreases, the vocabulary overlap (average unigram overlap
score) also decreases. This consistently decreasing score shows
that the summary descriptions generated by the two algorithms
is different, in terms of the vocabulary used for generating
summaries. A deeper examination of the generated summaries
reveal that the reason for these decreasing scores is rooted in
the underlying techniques used by the two algorithms to rank
sentences i.e. TextRank uses a variant of PageRank to compute
the importance of each sentence in the document, whereas
LexRank uses inverse sentence frequency (see preceding
section), to compute the importance of each sentence in the
document. As a result, the two algorithms compute different
rank for each sentence.

From the table it can also be observed that the average LCS
similarity scores are relatively low. These lower scores
indicates that, in the longest subsequence that is common
between the two summary descriptions, there is a significant
change in the ordering of tokens/words. A deeper examination
of summaries revealed the reasoning for this lower score i.e.
since the two algorithms use different techniques to rank
sentences, therefore the sentences chosen for generating

summary are also different. This reduces the size of the longest
subsequence that is common between the summaries generated
by LexRank and TextRank.

From this discussion we conclude that the summary textual
descriptions generated by the two algorithms are significantly
different from each other and thus the choice of the
summarization technique is non-trivial.

C. Similarity Scores between Summary and Full length

Descriptions

Table III shows the average similarity score of TextRank
generated summary descriptions with the full-length textual
description and LexRank generated summary descriptions with
full-length textual description, using n-gram overlap (unigram)
and LCS. In order to generate the average similarity score, at
first we created 669 pairs of full-length textual descriptions and
summary descriptions generated by TextRank (FTD:TSD) by
adjusting the summary threshold to 75%. Subsequently, the
similarity score of each pair was computed using n-gram
overlap and thereafter, the average of the 669 similarity scores
was calculated. Accordingly, the 0.93 similarity score in the
table represents, that on an average 93% of the vocabulary
available in the full length textual description is also available
in the 75% summary description generated by TextRank.
Similarly, 669 pairs were generated between of full-length
textual description with the following, 50% summary
descriptions and 25% summary descriptions generated by
TextRank. Also, the process was repeated by creating 669 pairs
of full-length textual descriptions and LexRank generated
75%, 50% and 25% summary descriptions (FTD:LSD).

TABLE III. AVERAGE SIMILARITY SCORES BETWEEN FTD:TSD AND

FTD:LSD

Estimation

Model

Average similarity score

FTD: TSD FTD:LSD

75% 50% 25% 75% 50% 25%

N-gram 0.93 0.80 0.64 0.92 0.83 0.65

LCS 0.99 0.99 0.99 0.99 0.99 0.98

From the table it can be observed that, as the summary size
decreases the vocabulary overlap (average unigram overlap
score) decreases for both pairs, FTD:TSD and FTD:LSD. This
consistently decreasing score shows the expected behavior i.e.
a reduced set of vocabulary is used to generate summary
description. Another observation is, there is no significant
difference in the average score of the two pairs, FTD:TSD and
FTD:LSD. We contend, these slight differences in the average
overlap scores of the two pairs does not represent that the
TextRank & LexRank generated summary descriptions are
identical to the full-length textual descriptions. It rather
represents that the vocabulary used by the two algorithms to
generate summary descriptions significantly overlap with the
vocabulary used in the full-length textual descriptions.

To our surprise the LCS based similarity score is 0.99 for
both pairs, FTD:TSD and FTD:LSD. Also, the value does not

Fig. 4. A comparison of N-gram overlap between FTD:LSD pair and FTD:TSD pair at 75% summary.

change significantly, even when the summary size is changed.
This higher similarity score indicates, in the longest
subsequence, that is common between the two descriptions,
there is no change in the ordering of tokens of words. A deeper
examination of summaries revealed the reason that, both
TextRank and LexRank decompose the full-length textual
description into sentences prior to ranking each sentence. The
decomposition is based on the punctuations, in particular
fullstop. Subsequently, the sentences are ranked. When it is
required to generate a summary of a text, say 50% summary,
the 50% sentences with the higher ranking are selected to
compose summary textual description. Note, the order of
sentences, as maintained in full-length textual description, is
retained by both algorithms while composing summary
descriptions, i.e. the vocabulary within the sentence as well as
the ordering in the sentences does not change. Due to that, the
LCS similarity score is very high.

We return to investigate whether the higher average
similarity score represent that TextRank and LexRank
generated summary descriptions are identical to the full-length
textual description or not. In Fig. 4 we plot a comparison of n-
gram overlap between both pairs, (FTD:LSD pair at 75%;
FTD:TSD pair at 75%). From the graph, two observations can
be made: a) the FTD:LSD pair and FTD:TSD pair similarity
scores do not overlap and therefore the identical average scores
do not give a true representation of the similarity score. This
can be observed from the fact that majority of the lines
representing the similarity score of the FTD:LSD pair, does not
touch the dots representing the similarity score of the
FTD:TSD pair, in the graph. Secondly, the dots representing
the FTD:TSD pair similarity score are closer to 1 compared to
FTD:LSD pair. This shows, TextRank generated summary
descriptions are more similar to full-length textual descriptions
than LexRank generated summary descriptions.

V. CONCLUSION

In this paper we advocate the use of summary textual
description of process models, to enhance the efficiency and
effectiveness of process matching. However, a rigorous
investigation is required to analyze the tradeoff (in terms of
efficiency and effectiveness) between the use of summary
textual descriptions and full length textual descriptions. To
fulfil this requirement, we have generated a corpus of textual
descriptions of process models, and corpora of summary
textual descriptions of the same set of process models. In
particular, in this paper we have discussed the process of
generation of these corpora and specification of each corpus.
Further, we used two algorithms TextRank and LexRank to
summarize the textual descriptions. We applied two basic
techniques, N-gram overlap and LCS to establish that two auto
summarization algorithms generate different summaries. Our
statistical analysis has shown that the datasets produced by two
algorithms are significantly different and thus the choice of the
summarization technique is non-trivial.

REFERENCES

[1] M. Weske, “Business process management - concepts, languages,
architectures,” 2nd ed., Springer, 2012.

[2] A. Scheer, and F. Habermann, “Making ERP a success: Using business
process models to achieve positive results,” Communications of ACM,
vol. 43, pp. 57-61, 2000.

[3] Z. Yan, R. Dijkman, and P. Grefen, “Fast business process similarity
search,” Dist. & Paral. Data., vol. 30, pp. 105-144, 2012.

[4] M. Rosa, H. Reijers, W.M.P Aalst, R. Dijkman, J. Mendling, M. Dumas,
and L. Banuelos, “APROMORE: An advanced process model
repository,” Expt. Sys. Appl. vol. 38, pp. 7029-7040, 2011.

[5] M. Becker and R. Laue, “A comparative survey of business process
similarity measures”, Computer in Industry. 63, pp. 148 – 167, 2012.

[6] M. Kunze, M. Weidlich and M. Weske, “Querying process models by
behavior inclusion,” Soft. Sys. Mod., vol. 14, pp. 1105-1125, 2013.

[7] M. Dumas, L. Banuelos, and R. Dijkman, “Similarity search of business
process models,” In Proc. of IEEE Data Eng. Bullt., vol. 32, pp. 23-28,
2009.

[8] W.M.P. Aalst, A. Medeiros, and A. Weijters, “Process equivalence:
Comparing two process models based on observed behavior.” In Proc. of
BPM, Springer LNCS 4102, pp. 129-144, 2006.

[9] C. Ekanayake, “Consolidation of business process model collections,”
PhD thesis at QUT, 2014.

[10] A. Awad, A. Polyvyanyy and M. Weske, “Semantic querying of
business process models,” In Proc. of the IEEE-EDOC, pp. 85-94, 2008.

[11] H. Leopold, J. Mendling, and A. Polyvyanyy, “Supporting process
model validation through natural language generation,” IEEE
Transactions on Software Engineering, vol. 40, pp. 818-840, 2014.

[12] H. Leopold, H.V.D. Aa, F. Pittke, M. Raffel, J. Mendling, and H.A.
Reijers, “Integrating textual and model-based process descriptions for
comprehensive process search,” In Proc. of 17th International
Conference on Business Process Modeling, Development, and Support,
Springer LNBPI, vol. 248, pp. 51-65, 2016.

[13] O. Kurland and L. Lee, “Corpus structure, language models, and ad hoc
information retrieval,” ACM Transactions on Information Systems, vol.
27, no. 3, pp. 13:1--13:39, 2009.

[14] K. Shahzad, K. Shareef, R. F. Ali, R. M. Adeel and A. Abid,
“Generating Process Model Collection with Diverse Label and
Structural Features,” unpublished.

[15] R. Abascal-Mena, R. Lema, and F. Sèdes, “Detecting sociosemantic
communities by applying social network analysis in tweets,” Social
Network Analysis and Mining, 5(1), pp. 1-17, 2015.

[16] J. Diesner, and K. M. Carley, “Exploration of communications networks
from the Enron email corpus,” In Proc. of the Workshop on Link
Analysis, Counterterrorism and Security, SIAM Intl. Conf. on Data
Mining, pp. 3–14, 2005.

[17] A.B. Cedeno, P. Rosso, and J.M. Benedi, “Reducing the Plagiarism
Detection Search Space on the Basis of the Kullback-Leibler Distance,”
In Proc. of 10th International Conference on Computational Linguistics
and Intelligent Text Processing, Springer LNCS, vol. 5449, pp. 523-534,
2009.

[18] [18] L. Bergroth, H. Hakonen and T. Raita, “A Survey of Longest
Common Subsequence Algorithms,” SPIRE. IEEE Computer Society.
pp. 39–48, 2000.

[19] Object Management Group (OMG). Business Process Model and
Notation (BPMN) Version 2.0, http://www.omg.org/spec/BPMN/2.0/.
last accessed on June 13, 2016

[20] Signavio www.signavio last accessed on 30 June 2016

[21] M. Snoeck, I. Oca, T. Haegemans, B. Scheldeman, and T. Hoste,
“Testing a selection of BPMN tools for their support of modelling
guidelines,” In Proc. of the Working Conference on Practice of
Enterprise Modeling, Springer LNBIP, vol. 235, pp. 111-125, 2015.

[22] J. Mendling, H. Reijers, and W.M.P Aalst, “Seven Process Modeling
Guidelines (7PMG),” Inf. & Soft. Tech., vol. 52, pp. 127-136, 2010.

[23] S. Zaheer, K. Shahzad and R. M. Adeel, “Comparing Manual- and Auto-
Generated Textual Descriptions of Business Process Models,” In Sixth
International Conference on Innovating Computing Technology.,
unpublished.

[24] R. Mihalcea and P. Tarau. “TextRank - bringing order into texts,” In
Proc. of the Conference on Empirical Methods in Natural Language
Processing (EMNLP 2004), Barcelona, Spain, pp. 404-411, 2004.

[25] G. Erkan and D. Radev, “LexRank: graph-based centrality as salience in
text summarisation,” Journal of Artificial Intelligence Research, 22, pp.
457-479, 2004.

[26] V. Gupta and G. S. Lehal, “A survey of text summarization extractive
techniques,” J. Emerg. Technol. Web Intell., vol. 2, no. 3, pp. 258–268,
2010.

[27] B. Siniša and V. Štefanec, “N-gram overlap in automatic detection of
document derivation,” The Future of Information Sciences, pp. 373-382,
2011.

[28] P. Clough, R. Gaizauskas, S. Piao, and Y. Wilks, “Measuring text
reuse,” In Proc. of 40th Annual Meeting on Association for
Computational Linguistics, pp. 152-159, 2002.

[29] A.B. Cedeno, P. Rosso, and J.M. Benedi, “Reducing the Plagiarism
Detection Search Space on the Basis of the Kullback-Leibler Distance,”
In Proc. of 10th International Conference on Computational Linguistics
and Intelligent Text Processing, Springer LNCS, vol. 5449, pp. 523-534,
2009.

	I. Introduction
	II. Motivating Example
	III. The Corpora
	A. Full length Textual Descriptions
	B. Generating Summary Descriptions
	C. Characteristics of the Summary Corpora

	IV. Computing Similarity
	A. Similarity Estimation Models
	B. Similarity Scores between Summary Descriptions
	C. Similarity Scores between Summary and Full length Descriptions

	V. Conclusion
	References

