Analyzing and Improving Application Launch Time
Performance in High Memory Pressures for Android

M Abubakar Siddique*, Hasan Magbool® and Sheraz Naseer*
Department of Computer Science, University of Management and Technology
Lahore
Email: *abubakar.siddique@umt.edu.pk, Thasan.magbool@umt.edu.pk, ¥sheraz.naseer @umt.edu.pk

Abstract—Android is the most popular operating system.
Although, it has been more than 7 years since its first release,
yet there has not been developed any tool(s) that can analyze the
performance of any application, especially at the launch time.
Application (app) launch time plays an important role in the sub-
sequent success of the application, as it gives the first impression
about the application performance to the user. This analysis is of
crucial importance in situations when device is running on low
available memory. The availability of such automated systems
can allow application developers to enhance the application
performance thus leading to improved user experience. In this
paper, the application launch time performance is our focal
point with the detailed analysis of application performance.
Particularly, we present a system that analyzes applications
launch time in almost any given scenario; for instance, an
application is launched in normal and high memory pressure;
high memory pressure without network connectivity and cached
application. The proposed system can clearly show the difference
in the launch time of several types of applications in different
scenarios. Finally, we also suggest techniques to improve the
application launch time performance.

[. INTRODUCTION

Android certainly is the most growing [1] operating system
(OS). It runs on a variety of devices like smart phones, tablets,
TVs, watches, and an un-ending list goes on. Random-access
memory (RAM) is a precious resource, especially on a mobile
OS. To handle low memory scenarios, android has a low
memory killer (LMK). But, when a user quits an application
(app), activity manager does not kill the process instead it
is kept in a least recently used (LRU) cache to reduce the
response time, just in case if user returns to app in the
future [2]. Android defines different levels for LMK to kill
empty apps to Foreground running apps depending on the free
memory size. Table 1 shows, the free memory and type of the
apps to kill to free memory on device.

Almost all android devices have a limited memory, so there
are more chances to run out of memory or low memory
scenarios. Therefore, when most of the apps are launched,
android has to free some memory, which adversely affects the
app launch time, which is the duration when a user touches
the app icon till the first screen is shown for interaction. App
launch time plays a vital role in user experience of the app.

In spite of great success of android OS in the developer
community and in general public overall, there has not been
developed any tool(s) to analyze the performance of any
application in general and specifically at the launch time.

TABLE I
NEXUS 5 RAM THRESHOLD IN MB(S) FOR LMK

Type of App | Memory (MB)
Empty App 180
Hidden App 126
Visible App 150

Type of App Memory (MB)
Content Provider 144
Secondary Server | 100
Foreground App 90

Such an analysis has significant importance in various settings,
particularly in low available memory scenario. Analysis of app
launch time performance is the main contribution of this paper.

The remainder of this paper is organized as following.
Section II introduces android OS and its app launch procedure.
Section III provides a brief overview of the related work.
Section IV presents our proposed app launch time analyzing
system. Section V shows several observations and insights into
the data acquired. Finally, we conclude with some suggestions
to improve app launch time performance in section VI

II. ANDROID APP LAUNCH PROCEDURE

Every Android application runs in its own process and
each process is forked from Zygote [3]. Zygote is the system
process preloaded with some common code and framework
classes to be shared across all processes. Every process needs
some special class files and reading those files individually
may not be effective. To make it faster, zygote preloads these
class files; and fork from zygote makes it available for all
processes.

This method is also helpful in memory management; zy-
gote is forked with copy-on-write (CoW). Thus, no memory
overhead will occur, until write operation is performed for
individual class file. These classes remain shared across all
processes, because most of the time, write operation is not
performed for these classes.An android application is launched
by two procedures; first one is cold launch, when process is to
be forked from Zygote. The second procedure is warm launch,
when process already exists in background and background
process is brought to the foreground.

In case of cold launch, as shown in Figure 1, firstly the
user touches an application icon. Launcher application sends
intent to be launched which is a request to launch the desired
application. Activity manager, that is being run inside System
server will receive intent and prepares it to be launched.
Activity manager requests to the window manager to prepare a

(1) Touch
anicon

I Handle Click

(2) Intent for app
startActivity(Intent)

Launcher

ClickMandler java

Prepare Ul window

System Server

(6) Activity Lifecycle Window

Manager

-onCreate()
-onResumef) (3) Request fork
-onStart()

.-lpFl‘pl'pcation "-. Zygote

rocess |—
Activity.java P tsl Initialize Zygotelnit java
h application T {4) Process fork

Fig. 1. Android app cold launch

window with token. Then, activity manager sends the request
to fork zygote itself and generate child process. A new process
is initialized and activity manager brings it to the foreground.
Further, activity of that process starts calling its onCreate,
onStart and onResume methods; and continues with its typical
lifecycle [4].

During warm launch, as presented in Figure 2, the user
touches an application icon; the launcher application sends
intent to be launched to the activity manager, which sends
request to the window manager to prepare a window with
token. Furthermore, the activity manager sends resume request
to the existing process present in background. The background
process resumes itself and activity manager brings it to the
foreground. Further, the lifecycle of activity continues with
onRestart, onResume and onStart procedures.

As it is given in Figure 3, cold launch takes long time to
launch and warm launches are quick. Android does not kill
every process on exit, to make apps switching faster. Android
keep apps cached in RAM, until there is not enough memory
available to load new application. In this scenario, Android
uses LRU algorithm to kill processes in background and keeps
killing until there is sufficient memory available.

III. RELATED WORK

Android OS performance for real-time embedded system
has been evaluated in [5]; this study exposed various limi-
tations of android OS. An analysis of android mobile web
developed using PhoneGap has been discussed in [6]. Authors
in [7] suggest a way of minimizing launch time of apps up
to 6 seconds per app using predictive user context. Windows
phone OS was modified as an implementation of the system;
however, such analysis was not performed for android OS.

(1) Touch
on icon

I Handle Click

(2) Intent for app
startActivity(Intent)

Launcher

ClickHandler java

Prepare Ul window

. Systemn Server
(4) Activity Lifecycle Activity
Manager.java
- onRestart()
- anStart() (3) Request resume
-onResume()
Application — Background
Process | —
(Foreground} | Process
Activity java

Fig. 2. Android app warm launch

Only a few studies have been conducted on the subject.
Comparison of app launch time till 8th launch has been per-
formed in [8], thus considering cached apps takes significant
less time after 4th launch. Several scenarios have not been
considered in this study, e.g. network requests, high memory
pressure, etc.

It is suggested in [9] that app launch time can be minimized
by preloading a few variants of java packages and some
improvements in app launch time have also been shown.
Preloading such packages may fasten some specific type of
applications, but can it handle all types of applications is a
big question mark. Moreover, overhead of preloading such java
packages have been completely ignored.

The app launch time performance is the main focus of this
paper; we also perform detailed analysis of app performance,
almost all possible scenarios have been considered including
high memory pressures. Our work also adds various sugges-
tions to minimize the app launch time without any overhead
and caters the usage behavior, thus considering all possible
types of apps.

IV. OUR PROPOSED SYSTEM

We have developed a system that analyzes the app launch
during normal and high memory pressures scenarios. We have
chosen a set of top rated and well performing apps from
Google Play and results can be viewed in graph. Our system
always kills required application process to make sure we
are always performing cold launch. Then it calculates the
free memory (excluding cached memory) and further creates
high memory pressure by launching multiple apps and keeps
switching between them until free memory is lower than low
memory threshold (when android starts killing processes from
LRU).

B Caold Launch Time ims)

2900 B ‘Warm Launch Time {ms)

1650

1100

Milliseconds

550

@f*@@ﬁﬁg

o
& ef‘f‘ o

Fig. 3. App launch time in cold and warm launch scenarios.

Finally, it launches the application and calculates its launch
time. We have used Nexus ROM to test and we have not added
any monitor in android ROM. Hence, there is no memory
overhead. Our system only uses the android logs to calculate
the launch time for an app that starts with touch on app icon
and ends when onResume method is called.

V. EVALUATION

The proposed system has been used to analyze launch per-
formance of several top rated apps and achieved performance
statistics are presented and discussed in this section. Android
allows a maximum number of memory to allocate by an
application, depends on vendors, because memory for different
handsets range from 512 Megabytes (MB) to 4 Gigabytes
(GB). For instance, LG Nexus 5 allows 192 MB in standard
mode and 512 MB in cases where application developers
require enhanced graphics and high memory consumption
during application usage. Google Nexus 5 running Android
(5.1.1) has been used to analyze our system.

The app launch time results during normal and high memory
pressure scenarios are presented in Figure 4. Acquired results
show that there is a significant difference between normal
launch and high memory pressure launch time. All selected
apps have twice or greater launch time during high memory
pressure. Further it is also found that apps using network calls
at launch have higher launch time.

Further we have investigated how the network communica-
tion affects the app launch time during high memory pressure.
Figure 5 gives comparison between high memory pressure
launch time of apps with network connectivity and during no
internet connection. It shows that launch time in no network
connectivity scenario is much reduced for apps using network
requests at launch time, e.g., Twitter, Sound Cloud and Skype.

Presented results clearly indicate that games (high graphics)
and apps requesting network connectivity at earliest stage or
during launch are taking long time. During high memory

foao B Launch Time during normal memary {ms)
H Launch Time during high mamory pressure {ms)

5250
L
2
&
¥ 3s00
&
z

1750

o " " "
) < Q@.gf*‘ e ;ﬁ? Q{g & P sﬁgﬂ e
u"dﬁ“ : & s
Fig. 4. App launch time in normal and high memory pressure scenarios.
7000
B Launch Time during Memaory pressure no netwark
B Launch Time during pressure mamory (ms)

5250
;
§ 3500
s

1750

o o

&
P

P
&

BE;?

& &
Fig. 5. Effect of network communication on app launch time.

pressure, every single app takes higher launch time, which
suggests that high memory usage increases the launch time of

apps.
VI. CONCLUSION

In this paper, we proposed a system to analyze the android
app launch time for almost any possible given scenario. Our
system only uses android OS logs to monitor the app launch
events, thus neither custom ROM nor extra usage of memory
occurs. Evaluation of the app launch performance using the
proposed system revealed that cold launch is always expensive
than warm launch. The launch time of all the apps tested
increased by a factor of at least two in high memory pressure.
Performance of the apps making network request at app launch
degraded even more; and launch time increased by at least
three times.

Based on the investigation using the proposed system, we
propose a few techniques to minimize the app launch time with

existing android ROM and no memory overhead. Cold launch
time can be reduced by minimizing network requests during
launch. Apps should request memory allocations gradually,
to make sure that OS will need to kill minimum number of
processes, this will in effect reduce the app launch time as
well. Another effective way to reduce launch time would be to
use use warm launches instead of cold launches when possible.
User context can be used to learn users app usage behavior,
thus keeping LRU cache updated, can also lead to minimize
the app launch time.

We also plan to implement a modified version of android
ROM for fast app launch using predictive user context, which
will rank apps on device and try to keep them in cache, hence,
making it possible to use warm launches.

REFERENCES

[1] Gartner Smart Phone Marketshare 2015 Q2. Gartner, Inc. Retrieved
2015-08-21. http://www.gartner.com/newsroom/id/3115517

[2] Managing Your Apps Memory. Android
Developer portal, Retrieved 2015-08-29.
https://developer.android.com/training/articles/memory.html

[3] Processes and Threads. Android Developer portal, Retrieved 2015-
08-29. http://developer.android.com/guide/components/processesand-
threads.html

[4] Activities. Android Developer portal, Retrieved 2015-08-29.
http://developer.android.com/guide/components/activities.html

[5] Maia, Cludio, Luis Miguel Nogueira, and Luis Miguel Pinho. Evaluating
android os for embedded real-time systems. 6th International Workshop
on Operating Systems Platforms for Embedded Real-Time Applications.
2010.

[6] Corral, Luis, Alberto Sillitti, and Giancarlo Succi. Mobile multiplatform
development: An experiment for performance analysis. Procedia Com-
puter Science 10 (2012): 736-743.

[7] Yan, Tingxin, et al. Fast app launching for mobile devices using
predictive user context. Proceedings of the 10th international conference
on Mobile systems, applications, and services. ACM, 2012.

[8] Nagata, Kyosuke, and Saneyasu Yamaguchi. An Android application
launch analyzing system. Computing Technology and Information Man-
agement (ICCM), 2012 8th International Conference on. Vol. 1. IEEE,
2012.

[9] Nagata, Kazuyuki, et al. Measuring and Improving Application Launch-
ing Performance on Android Devices. Computing and Networking
(CANDAR), 2013 First International Symposium on. IEEE, 2013

