

Computation Offloading: Is it practical and
feasible?

Abdul Haseeb Shujja1, Imran Saleem2, Sher Afghan3

1, 2, 3School of Professional Advancement, UMT Lahore, Pakistan
1abdul.shujja@umt.edu.pk, 2imran.saleem@umt.edu.pk, 3sher.afghan@umt.edu.pk

 Abstract—Mobile phones are usually poor in terms of
battery, computation power and network bandwidth, which
result in applications with limited functionality in terms of
complex computations. A solution to this problem is
“Computation Offloading”. By sending resource intensive
computations to a server, precious resources like battery and
processing power can be saved on a mobile device. In the past
few years many techniques have been proposed to approach this
matter. This paper is a survey on existing techniques and
systems for computation offloading and in light of those
analyzes whether computation offloading is feasible to be
deployed commercially with the current infrastructure and
technology available. It also analyzes the major problems, their
possible solutions and future research areas for computation
offloading.

Keywords—computing; offloading; ubiquitous computing;

I. INTRODUCTION

It is quite fair to say that this is the era of voracious
mobile computing. The greatest obstacle in today's mobile
computing is the limited resources of mobile devices. We
have high speed processors, GPS, high resolution screens
and much more in our mobile devices but we need power to
keep these things alive. Short lifespan of batteries is the
greatest obstacle in meeting our mobile computing
requirements. We need to reduce the gap between the
required and available power. Either we increase the lifespan
of the batteries or somehow reduce the computation on our
mobile devices. In near future we do not see a significant
increase in battery lifespan [1]. Mobile devices are resource
constrained specially in terms of energy. A lot of work has
been done to overcome the bounds of limited mobile devices
resources by means of reducing computations on mobile
devices and one of them is by using the art of 'code
offloading' which shares the same idea behind RPCs where
procedural calls are made to a remote resource intensive
server and this way performing computations locally on
smartphone can be avoided. Connectivity between mobile
client and the remote server plays a pivotal role in code
offloading because of the battery backed power of mobile
devices and inherently unreliable wireless channel of
communication. Code offloading in mobile devices can yield
fascinating results in lab environment. In this paper we
assess the viability of techniques in real world and in what

areas we need to focus our research work to make code
offloading a commercial success. We analyzed different
architectures for code off-loading to filter down the barriers
of this technique of overcoming the resource constraints of
mobile devices available today to meet our rapidly growing
needs of mobile computing.

As mentioned above, energy conservation is the

primary concern when it comes to utilizing the full potential
of smart phones. Different studies have shown that longer
battery life is the top concern for smartphone users [2,3].
Computation offloading can help reduce battery
consumption, but there needs to be some decision making
involved as to when this is feasible or not. As other than
computation, the biggest energy-consuming task is
communication in a mobile environment, certain rules need
to be enforced when offloading which would analyze
whether the communication overhead is larger or smaller
than the computation overhead and take a decision
accordingly. If energy required to offload data is less than
what is required to compute it locally then the better choice
is to offload the data. Previous studies have shown that
applications with large computation-to-communication ratio
benefit more from code offloading[4].

Other than energy there are several other factors that

affect this decision making process. Available bandwidth, its
cost and latency are a few major ones. Many algorithms have
been proposed to make these decisions possible so as to
increase performance or conserve energy. These techniques
make these decision based on a number of factors which
include bandwidths, server speeds, available memory, server
loads, and the amounts of data exchanged between server
and mobile systems. The solutions include partitioning
programs [5,6,7,8] and predicting parametric variations in
application behavior and execution environment [9,10].

Once these offloading decisions are made, the next

question that arises is what to offload? Obviously parts of
code which involve interactions with the user or environment
cannot be offloaded to the server. But other parts of the code
which involve intense computations can be offloaded to the
server. The algorithm used for code offloading also needs to
specify whether to offload all this code to the server or just
send parts of it. Although each algorithm describes its own

way of partitioning code, but, all of these can be grouped
into two main categories i.e.[4]

● Static Partitioning
● Dynamic Partitioning
In case of Static Partitioning the programmer has to

specify which part of the code should be offloaded to run at
the server. And at run-time if the offloading parameters
allow it, that part of the code is offloaded to the server.

While in Dynamic Partitioning of code the programmer
might also have to specify off loadable code, the final
decision on whether the code should be offloaded or not is
dependent on the algorithm used. This decision could be
based on network conditions, previous behavior of the code
or the amount of data to be transferred.

A significant amount of research has been done over

the past 15-20 years concerning computation offloading with
regards to making it feasible, reliable decision making and
developing proper infrastructures. In the later half of 1990’s
the focus was more on making code offloading more feasible
for mobile environments[11,12,13,14,15,16,17,18,19] as the
mobile bandwidths at that time were insufficient for any
practical implementation of offloading. in the early 2000’s
the focus shifted towards the decision making
process[5,6,8,9,20,21,22,23,24,25] involved and then later on
with advances in cloud computing, increased network
bandwidths and virtualization technology new doors were
opened with regards to the infrastructure of code offloading
environments[7,26,27,28,29,30,31]. These technologies have
made computation offloading more practical in a real world
environment than just in lab setups. In the recent years a lot
of solutions have been proposed which can be used to
implement offloading on a commercial scale[32, 33, 34, 35,
36].These algorithms use either cloud environments or
virtualization technologies or a combination of both in most
cases.

The purpose of this paper is to analyze some of the

latest papers covering code offloading and to identify the
reasons as to what are the barriers to implementing it at a
large scale? Is it really feasible for the current networks we
have and if not what needs to be done in order to make it
more practical? For this purpose we did a detailed analysis of
some of the latest papers in computation offloading,
however, this is not a complete study of this subject as there
is a lot more research being done than what can be
summarized in a single paper. But, we try to give the reader a
general idea of what computation offloading is all about and
what are some of its practical aspects. The paper is organized
as follows: Section 2 explains the current state of the
research which has been done concerning code offloading.
Section 3 discusses the major enabling technologies in this
field. In section 4 we discuss the problems we have
identified as being the major reasons behind code offloading
not being practical yet. And finally section 5 concludes the
paper with some possible solutions and future research topics
which could help eliminate the problems identified.

II. CURRENT STATE OF CODE OFFLOADING

 As mentioned in the introduction there has been a
lot of research on the subject of code offloading over the
years. In this section we describe a brief summary of some of
the latest studies in this subject. But, before that it is
necessary to understand the basic reasons why computation
offloading is so important and what are the factors affecting
our decision making process when offloading code to a
server. Section 2.1 explores these factors and 2.2 takes a
brief overview of the latest papers.

2.1- Offloading decision making
 Although offloading code can be affected by many
factors, but, the two main criteria affecting this are 1.
Performance and 2. Energy consumption. One thing that
needs to be clarified here is that the application code can be
divided into two distinct parts: one which can never be
offloaded to the server (includes user interface and inputs
from the environment) and the second one which ‘might’ be
offloaded to the server(does not interact with user or
environment and is purely computational in nature).

 In this section we discuss these criteria and how
they affect the decision making process.

2.1.1-Performance enhancement
 Offloading can be used to enhance response times
of complex mobile applications which require a lot of
computations and would take a lot of time if done on a
device with very little computation power like mobile
phones. A suitable example for this could be a path finding
robot who has to detect obstructions in its path and change
its course accordingly. Object and obstruction detection
algorithms are usually very complex and require a lot of
computations. The processor controlling the robot might not
be that fast to actually run these algorithms and detect these
objects in real-time. But if we offload the object detection
part to a fast server then it can be done in no time and the
robot will avoid colliding with any of those objects.[6]
Another example in context to mobile phones could be of an
application which relies heavily on data from different
peripherals like GPS, accelerometer and camera etc. and
needs to evaluate the readings from all these collectively.
Doing such calculations on the mobile device will be
significantly slower than if they are done on a desktop
machine. There are also multiple other scenarios in which the
performance of mobile devices can be enhanced by using
offloading.

 Now, we need to define some parameters to
establish when offloading code to a server might result in
performance enhancement and when it is better to just
perform computations on the mobile device. On an abstract
scale we can say that the mobile device’s performance will
be enhanced if the communication link between the mobile
client and server is fast and the amount of data exchanged is

smaller in relation to the calculations required. The following
inequality can be used to describe the relationship between
these different parameters:[4]

 Here Sm is the speed of the mobile system, w is the
amount of computation that may be offloaded to the server,
di is the data sent to the server, B is the bandwidth of the
channel and Ss is the speed of the server. This inequality
holds if we have:

● large w: The program requires heavy
computations

● large Ss: The server is fast
● small di: The data sent to the server is

small
● large B: The bandwidth is high

 So from the above description it is quite clear that
only those parts of code should be offloaded which require
heavy computations and very small communication
overhead. Otherwise, the performance gain would not be
sufficient enough to make any difference.

2.1.2-Energy consumption
 Energy is the primary concern for mobile phone
users these days. As these phones are not only used for voice
communication anymore but their users also use them for
acquiring and viewing videos and photographs, playing
games, browsing the internet or as personal gadgets etc. All
these different uses increase the power consumption of the
mobile and reduce battery timings. And even though battery
technology has advanced a lot recently, but, it has not been
able to keep up with the ever increasing demand for smaller,
lighter and longer lasting batteries. One possible solution
here is to offload the more energy consuming operations so
that we can save power on our mobile devices [2010]. We
can use a similar inequality like the previous section to
describe the constraints here as well: [4]

 Here Pm is the power on the mobile device, Pc is the
power required to transfer data from the mobile to network
and Pi is the power consumed at the mobile device while
waiting for the results from the server. From analyzing this
inequality we can see that energy consumption of the mobile
device will be minimized when the same requirements as the
ones for Equation 1 are met.

 However, these inequalities are based on the
assumption that the data being transferred is from the mobile
device to the server. If the data is already present somewhere
on the internet (pictures or videos etc.) and the mobile device
only passes the link for that data to the server, then it can

fetch that data from the corresponding url and hence increase
the performance and reduce the battery consumption as well.

2.2-Analysis of some leading papers
 As mentioned earlier, a lot of research has been
done over the past years on the topic of mobile code
offloading. Recently with advances in cloud computing and
virtualization technology, new doors have been opened in
this field as well which have taken computation offloading to
a whole new level. In this section we discuss some of the
recent papers which utilize these technologies to enhance the
mobile computing environment. Although there are a lot of
papers that discuss this subject but mentioning all of them
here would be impossible. So, we picked only the ones
which are implementing distinctively different approaches to
give the readers a general idea of what the general trends
concerning mobile code offloading are these days.

2.2.1-CloneCloud[33]
 Architecture describes a way to partially off-load
execution from the smartphone to the computational service
infrastructure hosting a cloud of smartphone clones.
Smartphone clone at the cloud is a VM of the smartphone
OS synchronized with the state of the corresponding
smartphone. Computationally intensive and background
tasks which are less user interactive can be off-loaded to
execute on the clone running at resource rich machine in the
cloud. These tasks can be file scanning, photo analysis and
web crawling etc. Off-loaded tasks can continue execution
even when the smartphone is turned off which greatly helps
saving power of the smartphone. CloneCloud uses semi-
dynamic partitioning of the code and synchronize phone with
the clone either through fine grain or coarse grain
synchronization depending on the off-loaded application
requirement and available bandwidth. Updates for
synchronization are sent to the clone in the form of deltas to
save bandwidth and power. For practical demonstration
Android OS application was off-loaded to the server where a
Dalvik VM [42] was running with the same application. The
Replicator running at the smartphone by sending updates to
the clone synchronizes clone and smartphone application
status. For practical application Alien Dalvik [40] can be
used to run Android Application on non-Android hardware
such as x86 architecture.

2.2.2-Cloudlets [40]
 Another design is to use cloudlets for code off-
loading. Cloudlet are widely spread internet infrastructure
whose compute cycles and memory are leveraged by nearby
mobile devices. These cloudlets are usually not much
resourceful machines but are resource rich compare to the
smartphones. Cloudlets can be desktops, netbooks, kiosks or
customized ATM. Cloudlet approach is different from Cloud
based approach where smartphones connect to the main
cloud which can be at multi hop distance. Cloudlets form a
peer to peer network among themselves along with
connecting to the main cloud at the same time. Every device
connected to the cloudlet is registered at the main cloud and

can connect to the main cloud or the cloudlet depending on
the throughput and latency. Study [40] shows that for the
maximum 4 wireless hops from smartphone to the cloudlet,
the cloudlet based approach performs poorly for some of the
requests, though the cloudlet based approach can outperform
the cloud based approach for most of the made requests. And
the cloudlet based approach always outperforms the cloud
based approach when the maximum of 2 cloudlet hops. In
scenarios where the maximum number of cloudlet hops is
more than 2 the cloudlet-based approach doesn’t always
outperform the cloud-based approach. So it is suggest that if
the cloudlet based approach is to be used when the maximum
number of cloudlet hops does not exceed 2 which can be
achieved by using latest technologies such as the Flashing[]
or by using WiFi repeaters. Additionally cloudlets can
benefit by keeping the routing tables with themselves so the
devices of one cloudlet can connect to the devices of other
cloudlets or main cloud.

Fig. 1. Cloudlet based Architecture

2.2.3-MOMCC[35]
 Mobile devices are inherently resource poor both in
terms of energy and computation power. This paper
addresses the later of these two issues by proposing a market
based architecture in which nearby mobile devices are used
to augment the computation power deficiency of these
devices. The basic motivation behind this idea is that most
other techniques being proposed require the use of
specialized hardware (small servers or very high speed
internet connectivity) but by using this we can eliminate the
costly hardware and use the neighboring mobile devices for
our computations as they would have way smaller latencies
with our client as opposed to the long latencies experienced
in WAN and mobile networks. Although this approach may
result in draining the batteries of neighboring mobiles, but as
a compensation to that, the owners of the mobile devices
which are performing the computations can be paid by
service providers based on how much computations they are
performed. Also the mobile user who requested the
computations will have to pay according to the number of
computations offloaded.

 The basic architecture this paper proposes is one
based on and very similar to web services. Every developer
that wishes their application to be able to be offloaded should

develop it like a web service with a map-reduce like
architecture. The overall architecture of the system consists
of 4 distinct entities namely: service developer, service
governor, service host and service requester. Service
developer is the programmer who develops the application,
service host represents the mobile devices which offer their
services for computations, service requestor is the client or
the service user and service governor is a central entity
which keeps track of the services, hosts, requestors and
distributes the workload between the service hosts.

 This kind of publicized computation may result in
malicious attacks on users. To stop that a certain level of
security needs to be implemented, this is also the job of the
governor. The service developer develops an application and
registers itself with the governor and publishes the
application there. The service requestors download the
application from the governor and also the service hosts are
published the code they have to execute from the governor.
This approach removes any interaction from the developer
during execution by totally isolating it from the users, hence,
removing any possibility of malicious applications acting as
Trojans/spyware etc. The second biggest security risk in this
environment is the service hosts. Each of these mobile
devices will have different levels of security and reliability
on it. For this purpose the governor constantly monitors these
hosts and when assigning a job, only assigns it to hosts,
which fulfill the minimum-security criteria for that
application.

Fig. 2. MOMCC Cycle[35]

 This approach can be very attractive and useful for
both mobile users and service providers as they can act as
service governors while paying service developers and hosts
for their services, they can charge the service requestors for
the services they request.

2.2.4-MAUI [32]
 MAUI is a system that enables fine-grained energy-
aware offload of mobile code to the infrastructure. Previous
approaches to these problems either relied heavily on
programmer support to partition an application, or they were
coarse-grained requiring full process (or full VM) migration.
MAUI uses the benefits of a managed code environment to
offer the best of both worlds: it supports fine-grained code
offload to maximize energy savings with minimal burden on

the programmer. MAUI decides at runtime which methods
should be remotely executed, driven by an optimization
engine that achieves the best energy savings possible under
the mobile device’s current connectivity constraints.

 MAUI achieves its superior results by some of the
benefits of today’s latest managed code environments. The
authors have used the Microsoft .NET Common Language
Runtime (CLR) for their implementation, however, the same
can be done through java also. The managed code
environment enables it to ignore the instruction set
architecture differences between the mobile (ARM) and the
offload server (usually x86). First the CLR is used to
generate two copies of the code, one which runs on the client
and the other one which runs on the server. Then it uses
program reflection combined with type safety to identify
which portions of the code can be offloaded to the server. It
also profiles each method to determine its net shipping cost
with context to local resources and network conditions and
after comparing them only offloads those methods whose
offloading can be beneficial in terms of energy conservation
and faster execution. All this is performed by the MAUI
profiler which is constantly running in the background.
Hence, making it highly dynamic. If after some time
offloading a method becomes too costly, MAUI can always
execute it locally and in the process saving valuable
resources.
 MAUI provides an architecture in which
programmers identify the methods which can be offloaded to
the server, but, it is not necessary that they would always be
offloaded. Deciding that is the job of the MAUI framework

Fig. 3. MAUI Architecture[32]

provides a high level view of the MAUI system architecture.
The MAUI runtime is always running in the background
monitoring the program execution. The profiler instruments
the program and collects measurements of the program’s
energy and data transfer requirements. Offload decisions
depend on three factors:

• The smart phone device’s energy consumption
characteristics;

• The program characteristics, such as the running
time and resource needs of individual methods

• the network characteristics of the wireless
environment, such as the bandwidth, latency, and packet
loss.
 The MAUI profiler measures the device
characteristics at initialization time, and it continuously
monitors the program and network characteristics because
these can often change and a stale measurement may force
MAUI to make the wrong decision on whether a method
should be offloaded.

 The MAUI solver uses data collected by the MAUI
profiler as input to a global optimization problem that
determines which remotable methods should execute locally
and which should execute remotely. The solver’s goal is to
find a program partitioning strategy that minimizes the
smartphone’s energy consumption, subject to latency
constraints.

 The client and server side proxies handle the data
and state transfer between the client and server. Additionally
the MAUI controller present at the server handles
authentication and resource allocation for incoming requests.

 In addition to the above mentioned architecture
MAUI also utilizes some optimized programming techniques
to minimize the overhead of data transfers between the
server and client. For example, during execution at server,
instead of sending the whole data to the server every single
time, it only sends the difference from previous values
(called deltas). The results from the server are also sent back
in the same format. This approach reduces the amount of
communication required resulting in additional energy
saving.

 Due to the implementation of these techniques,
MAUI shows extraordinary results practically. The following
figures (figure 4 and 5[32]) display some of the results in
terms of energy and execution times.

Fig. 4. Energy consumption

Fig. 5. Execution time

III. ENABLING TECHNOLOGIES

This section describes some of the enabling technologies

for the mobile computation offloading environments. The
introduction of these technologies has made it possible for
code offloading to be realized by offering improvements in
both architecture and infrastructure. The major factors
affecting this are advancements in wireless network
architectures, cloud computing and virtualization. Here we
describe these briefly and analyze how these have actually
helped improve code offloading.

3.1-Wireless networks and mobile agents

Till the late 90s, mobile networks did not have much
speed and the communication was full of errors and had
heavy losses. But, with the introduction of new technologies
(3G, WiFi etc.), the problem with speed is pretty much
solved and with the introduction of even faster network
technologies like 4G, speeds are expected to become even
faster. These improvements spurred many research activities
on mobile computing, including mobile agents.

Mobile agents are autonomous programs that can control

their movement from machine to machine in a heterogeneous
network. Mobile Agent infrastructures work to remove the
platform dependence while working in a mobile
environment. They usually make use of platform
independent technologies like XML or Java[12,13,18,19].
All these technologies focus on migrating computation for
mobile devices, network connectivity, and developing
platform independent applications.

3.2-Virtualization and cloud computing

Virtualization is a very old technology initially
introduced by IBM as a means to manage mainframe
computers and their usage[38] but was soon forgotten due to
the introduction of cheaper and smaller x86 machines[39].
However these x86 machines also come with problems like
underutilization, operational costs and security risks. During
the last decade virtualization has re-emerged as a solution to
all these problems. Virtualization provides solutions to all
these problems by running multiple operating systems on a
single machine simultaneously which are concurrent but
totally isolated from each other. Many different kinds of
virtual machines can be created on a single machine making
it highly scalable.

Cloud computing takes the concept of virtualization to a

whole new level by providing users with instances of virtual
machines on ‘lease’ whose number can be increased or
decreased according to the users requirements. These cloud
computing environments can be used very effectively for the
purpose of code offloading due to the services and ease of
use they provide for the developers and how they are already
optimized for dynamic changes in network and bandwidth
utilization.

IV. RELATED WORK

 The major aim of this paper is to present the major
research that’s been done in the field of code offloading and
to evaluate if code offloading (in its current form) feasible in
the industry.

4.1- Lack of Infrastructure
 The biggest obstacle in adapting code offloading is
the limited infrastructure present in the industry today. Code
offloading is viable only in conditions where the server (the
processing unit to which the code is offloaded) is very near
the client. As the number of hops between the client and the
server increase, the efficiency of code offloading decreases.

 Also, in the case of VM based code offloading it is
assumed that the server would have the necessary
software/hardware specifications to successfully run the code
in the VM. To achieve in the industry (on a wide scale) is
very difficult. The primary reason is the sheer number of
VM’s that are needed: iOS, Android, Windows Mobile and
the sheer versions of each platform.

4.2- High Speed Connectivity
 As we have demonstrated above, the power
consumption is inversely proportional to the available
bandwidth. Bandwidth available over data networks (3G,
Edge, GPRS) is not sufficient enough for optimal code
offloading as the energy conserved by offloading code is
offset by energy consumed by data transfer.

To make code offloading energy efficient we would need
data networks which are very fast (near the speeds of WiFi).

4.3- Lack of Development Technologies
 In code offloading a lot of code is being executed in
parallel on both the server and the client, also at the end of
each execution cycle the states/values of both client and
server need to be synced together. This presents another
challenge: the lack of development tools to help in the
development and debugging such parallel executions.

 By default all programmers program their code to
run sequentially. Even though parallel processing is common
these days, most programming languages are still sequential.
The major reason is the difficulty in debugging

 The same is the problem is with code offloading.
Today we lack the development tools to develop such
applications where code is offloading automatically and run
in parallel and also lack the ability to debug it thoroughly.

4.4- Subnet Switching
 A major problem with all the current
implementations of code offloading is how the state of the
server is transferred from one cell to the next. This is

especially true in cases where the server is coupled very
closely with the cell in which the client currently is.

 As the user moves from one node to the next, its
connection to the server is broken. If the server remains at
the same node then the hops between it and the client
increases: thus decreasing the performance and benefits of
code offloading. One way to overcome this is that the server
moves with the client to next the code. Here the problem is
how would the server know to which node it has to shift to,
and how would it transfer it state.

V. CONCLUSION AND FUTURE WORK

 As we have described above, code offloading in
its current state is not ready to be adapted by the
industry on a wide scale. However, there have been
cases in the recent history where industry has adapted
code offloading quite successfully. The industry adapted
the traditional client/server model into code offloading
quite successfully and some of the examples are Siri (a
digital assistant provided by Apple in it’s flagship
product: iPhone), Shazam (a song recognizing software).
In both these cases the programmers used the traditional
client/server model to offload parts of the program (such
as speech recognition) to the server.

 In order to be able to successfully adapt code
offloading on a wide scale, the following points need to
be addressed in further studies:

1. How to switch between nodes more efficiently.

2. Improving the development technologies.

3. How to offload code more reliably and when is
the ideal time to offload code.

REFERENCES

[1] Juan Camilo Corena, TomoakiOhtsuki, “Secure and Fast
Aggregation of Financial Data in Cloud-Based Expense Tracking
Applications”, Journal Network System Management (2012) 20:
DOI 10.1007/s10922-012-9248-y, Page 534–560.

[2] Fred Cheng, “Security Attack Safe Mobile and Cloud-based One-
time Password Tokens Using Rubbing Encryption Algorithm”,
Mobile NetwAppl (2011) 16, DOI 10.1007/s11036-011- 0303-9,
Page 304–336.

[3] Chirag Modi , Dhiren Patel , BhaveshBorisaniya , Avi Patel ,
MuttukrishnanRajarajan, “A survey on security issues and solutions
at different layers of Cloud computing”, Journal of Super
Computing (2013) 63, DOI 10.1007/s11227-012-0831- 5, Page
561–592.

[4] Abdul Nasir Khan , M.L. Mat Kiah , Sajjad A. Madani , Atta ur
Rehman Khan, Mazhar Ali, “Enhanced dynamic credential
generation scheme for protection of user identity in mobile-cloud
computing”, Journal of Super Computing, DOI 10.1007/s11227-
013-0967-y, Page 1-20.

[5] Binod Vaidya, DimitriosMakrakis, Hussein Mouftah, “Secure and
robust multipath routings for advanced metering infrastructure”,
Journal of Super Computing (2013) 66, DOI 10.1007/s11227-013-
1009-5, Page 1071–1092.

[6] Karan Verma, HalabiHasbullah, Ashok Kumar, “Prevention of DoS
Attacks in VANET”, Wireless Personal Communication (2013)
73:DOI 10.1007/s11277-013-1161-5, Page 95–126.

[7] Keiko Hashizume, David G Rosado, Eduardo Fernández-Medina,
Eduardo B Fernandez, “An analysis of security issues for cloud
computing”, Journal of Internet Services and Applications 2013,
4:5, http://www.jisajournal.com/content/4/1/5, Page 1-13.

[8] Scott Paquette, Paul T. Jaeger, Susan C. Wilson , “Identifying the
security risks associated with governmental use of cloud
computing”, Government Information Quarterly 27 (2010) Page
245–253

[9] Cryptography,website:http://www.barcodesinc.com/articles/cryptog
raphy2.htm [accessed on 5.12.14].

[10] Fundamental Security Concepts,
http://cryptome.org/2013/09/infosec urity-cert.pdf,[Accessed on
11.9.14].

[11] C.saravanakumar,arun,“an efficient ascii-bcd based steganography
for cloud security using common deployment model”,
www.jatit.org/volumes/Vol65No3/12Vol65No3.pdf, [Accessed on
11.11.14].

[12] Steganography,http://en.wikipedia.org/wiki/steganography,
[ACCESSED ON 31.11.14].

[13] SharezaShirali, M.H, “A new Approach to persain/Arabic Text
Steganography”, Computer and Information Science, 2006,
ICISCOMSAR 2006, Proc. 5th IEEE/ACIS International
Conference, 10-12 July 2006 pp 310-315.

[14] Piers Wilson, “Positive perspectives on cloud security”, information
security technical report (2011), 1363-4127/$,
doi:10.1016/j.istr.2011.08.002,Pp 1-5.

[15] Balachandra Reddy Kandukuri, Ramakrishna paturi V,
AtanuRakshi,“Cloud security Issues”, 978-7695-3811-
2/09/$26.00,IEEE 2009, DOI101109/SCC2009.84.

[16] GansenZhao,ChunmingRong, Martin GiljeJaatun,
FrodeEikaSandnes, “Deployment Models: Towards Eliminating
Security Concerns from Cloud Computing”,DOI: 978-1-4244-6830-
0/10, 2010,IEEE, Pp 189-195.

[17] Chandramouli, R., Kharrazi, M. &Memon, N., “Image
steganography and steganalysis: Concepts and Practice”,
Proceedings of the 2nd International Workshop on Digital
Watermarking, October 2003.

[18] Richard M. Thompson II, Cloud Computing: Constitutional and
Statutory Privacy Protections, http://www.fas.org/sgp/crs/misc/R4
3015.pdf [Accessed on 11.12.14].

[19] SianiPearson,Privacy, Security and Trust in Cloud Computing,HP
Laboratories, HPL-2012-80R1,
http://www.hpl.hp.com/techreports/2012/HPL-2012-80R1.pdf
[Accessed on 11.12.14]

[20] A V Parameswaran and AsheeshChaddha,Cloud Interoperability
and Standardization, SETLabs Briefings, VOL 7 NO 7, 2009, Page
19-26.

[21] “Video Steganography by LSB Substitution Using Different
Polynomial Equations”, A. Swathi, Dr. S.A.K Jilani,
Proc.International Journal of Computational Engineering Research
(ijceronline.com) Vol. 2 Issue. 5.

[22] N. Provos and P. Honeyman, Hide and seek: An introduction to
steganography, Proc. IEEE Security Privacy Mag., 1 (3) (2003) 32–
44.

http://www.jatit.org/volumes/Vol65No3/12Vol65No3.pdf

