
1

Sentiment Analysis of Roman Urdu/Hindi using

supervised methods

Huniya Arif1, Kinza Munir1, Abdul Subbooh Danyal1, Ahmad Salman1 and Muhammad Moazam Fraz1

1School of Electrical Engineering and Computer Science
National University of Sciences and Technology (NUST)

Islamabad, Pakistan

Abstract— The usage of online platforms to receive feedback,

opinion or remarks of the public about a particular subject has

become very common. Sentiment analysis is used to understand

the latest trends, summarize the general opinion and investigate

the cognitive human behavior. This paper performs sentiment

analysis on Roman Urdu dataset and reports on the experimental

results produced by different classifiers using feature selection and

representation. After translating a pre-existing English hotel

reviews dataset to Roman Urdu, the resulting corpus is analyzed

by employing machine learning approach for classification

purposes. The result of social analytics can assist organizations in

applying the proposed methodology to the collective sentiment

intelligence embedded in customers’ feedback in order to improve

their product, services, and marketing strategies.

Keywords—Sentiment Analysis, Machine Learning Techniques,

Support Vector Machine, Ensemble Classifiers, Naive Bayes, k-

Nearest Neighbor, Nearest Centroid, Decision tree, Linear

Classifiers

I. INTRODUCTION

The use of the Internet around the world has created vast

amounts of user-generated data. The rise in social media has

changed the way people view, create and share information.

Sites like Twitter and Facebook have become interactive

platforms where users openly share their opinions. For

organizations and consumers, these platforms are a great way

of knowing the opinions, feedback, and mindset of a large

number of people. It has become increasingly difficult to

process this steady stream of content. Sentiment Analysis (also

known as opinion mining) is a tool used to extract, analyze and

summarize textual information and discover the cognitive

behavior of humans. It determines whether the given sentence

is positive or negative in the context of human emotional

behavior. It opens up opportunities for marketing teams,

celebrities, politicians, and anyone concerned with opinions and

moods of the general public.

There have been namely two methods to find the sentiment

polarity of textual data: corpus-based and lexicon-based.

Corpus-based sentiment analysis trains a machine learning

classifier on a labeled sentiment corpus. The performance of the

classifier depends on the quantity and quality of the training

data. Lexicon-based sentiment analysis finds the polarity of

every word or phrase in a text document with the use of a

sentiment lexicon. The two ways to perform sentiment analysis

using lexicons is by either using a dictionary or a corpus. The

dictionary-based approach uses an existing dictionary that

contains a collection of words with their sentiment strength. A

lexicon-based approach using corpus searches through vast

amounts of data to find the probability of a term occurring in

conjunction with the positive or negative set of words.

In order to extract market intelligence embedded in online

comments, sentiment analysis needs to cater for a wider set of

languages. The Urdu language is spoken and understood in

major parts of Asia. In both script and morphology, it is a

different language from English. Whereas Roman Urdu is the

Urdu language written with the Roman alphabet. It is a

universal, non-standard mode of communication among Urdu-

speaking Internet users. This language is also used for poetry,

marketing, blogs, online news, commercials, music and films in

South Asia and the Middle East [1], [2].

Roman Urdu is a non-standard language used frequently on the

Internet. It has many irregularities in spellings. For example, the

word khubsurat (beautiful) in Roman Urdu has multiple

spellings. It can also be written as khoobsurat, khubsoorat, and

khobsorat. These words have the same meaning, but the

spelling varies according to the user. Another problem arises

when two words in Roman Urdu are spelled identically but are

lexically different, for example, aam means both mango and

common. In order to ensure quality in our training corpus, the

spelling of a word needs to remain consistent throughout its use.

Research on sentiment analysis has been mostly conducted on

a small number of languages. There is a scarcity of annotated

corpora in other languages. Facebook and Twitter APIs are

useful in extracting public comments posted on social media but

the manual labeling of data is a tedious and time-consuming

task. A solution to this problem is semi-supervised learning.

Semi-supervised self-training tries to automatically label

examples from unlabeled data and add them to the initial

training set in each cycle. Alternatively, an existing labeled

2

corpus can be translated to the target language for the

generation of a dataset.

Support vector machine classifier (SVM), Ensemble

Classifiers, K-Nearest Neighbors (kNN), Nearest Centroid,

Linear Classifiers, Decision Tree and Naive Bayes (NB)

Classifier are used to investigate the effectiveness of sentiment

analysis on Roman Urdu with different term weighting and

selection schemes. In order to facilitate research in Roman

Urdu, the annotated corpus used for training and classification

of text in this paper is available for download [3].

The paper is organized as follows: Section II gives a brief

overview of related work in sentiment analysis, Section III

illustrates the methodology followed in the paper, Section IV

discusses the performance measures used in evaluating the

classifiers, Section V uses figures and tables to describe the

experimental results and Section VI concludes the paper along

with a description of future works.

II. RELATED WORK

A. Sentiment Analysis using machine learning

In recent years, the field of sentiment analysis has

encouraged a lot of research albeit in limited languages. Abinash

et al. [4] have done sentiment classification by machine learning

methods. The vectorization of features is done using two

methods CountVectorizer and tf-idf. They have used NB and

SVM classification algorithm to determine the polarity of

English reviews and achieved an accuracy of 89.5% and 94.0%

respectively. Another machine learning approach by Melody

Moh et al. [5] makes use of a multi-tier classification

architecture consisting of data collection, preprocessing, feature

selection, classification and evaluation measures. The machine

learning algorithms, SGD, SVM, NB and Random forest

classifier, perform with accuracies above 80%. Geetika Gautam

et al. [6] preprocessed the data collected from twitter, extracted

sentiment words and used machine learning to classify the data.

Semantic analysis is achieved with English WordNet that

extracts the adjective from the sentence. It performs the highest

accuracy of 89.9%, followed by NB with 88.2% accuracy, SVM

with 85.5% accuracy and Maximum Entropy has the lowest

classification prediction with 83.8%. For sentiment

classification Vala Ali Rohani et al. [7] propose SentiRobo, a

supervised machine learning approach and enhanced version of

NB algorithm. P. Waila et al. [8] compare unsupervised

semantic orientation based SO-PMI-IR algorithm with

supervised classifiers NB and SVM to classify movie reviews.

The SO-PMI-IR algorithm obtains the highest accuracy of 88%

but it is time-consuming due to large computation of Pointwise

Mutual Information (PMI) values. Further comparison by V.K

Singh et al. [9] involves SentiWordNet and proves that NB

performs better than SVM in classification. SentiWordNet has

the minimum computation time as it needs no training but has

the lowest performance with accuracy level around 65%.

Warih Maharani [10] compares sentiment analysis

performance by the two approaches, lexical based and machine

learning based, with Indonesian language using Twitter.

Machine learning approach produces better accuracy with SVM

i.e. 81.43%, as compared to lexical based approach having

74.59% accuracy without stemming. Neethu et al. [11] created

their own feature vector by giving positive keywords the label

’1’ and negative as ’-1’. Emoticons and hashtags inside a tweet

are also labeled. If the keyword doesn’t exist, then it is given as

’0’. The vector is used in the classification of the tweets with

the help of SVM, NB, Maximum Entropy and Ensemble

Classifiers. The accuracy is close to 90.0% for all the

algorithms. Bin Lu et al [12] combined large sentiment lexicon

and machine learning techniques and used this approach for

subjectivity classification. Human-annotated lexicons and the

annotated corpus were both used. This approach combined with

SVM outperforms with an accuracy of 74-75% as compared to

the machine learning techniques themselves alone. Haruna Isah

et al. [13] compares lexicon and machine learning scores when

analyzing sentiment in product reviews on the Web. Both

methods give similar negative scores but their positive and

neutral scores vary sharply. The NB classifier gave a total of

83% accuracy. Deepu S. Nair et al. [14] use SVM and

Conditional Random Field (CRF) to check the polarity of

Malayalam film reviews. After the collection of data, the corpus

was manually tagged with respect to the context of the term in

the sentence. SVM performs better than CRF and accuracy of

91% is achieved. A hybrid approach to sentiment analysis of

news comments by Addlight Mukwazvure et al. [15] involve

using sentiment lexicon for polarity detection and using its

results to train machine learning algorithms, SVM, and kNN.

Yu Huangfu et al. [16] introduce Improved Sentiment Analysis

(ISA) which analyzes Chinese news with an algorithm of

subjective sentences recognition and subject word recognition.

General Sentiment Analysis (GSA) by Prashant Raina [17] is

compared with ISA and ISA proves to be faster and more

accurate. Serrano-Guerrero et al. [18] reviews and compares

fifteen free web services that provide sentiment analysis by

their ability to classify text as positive, negative or neutral, and

measuring the intensity of each detected sentiment. Amandeep

Kaur et al. [19] conduct a hybrid research approach consisting

of N-grams model and NB for sentiment analysis of the Punjabi

text. NB classifier trains on the features extracted from the N-

grams model. When the results were compared with existing

methods, the accuracy of hybrid approach appeared to be

effective.

B. Sentiment Analysis in the Urdu language

The work on sentiment analysis is still in initial stages for the

Urdu language, especially in the Roman version. In Urdu

Script, Afraz Z. Syed et al. [20] used sentiment-annotated

lexicon-based approach and identified and extracted SentiUnits

(expressions containing sentiment information) from Urdu texts

with the help of shallow parsing. They produced an accuracy of

72.0% on movies reviews and 78.0% on product reviews.

Tafseer Ahmed [21] proposes a method to transliterate Urdu in

the roman script to Urdu script. He identifies the different

3

spelling rules used in roman Urdu and encodes each word

according to an encoding scheme to match it with a word list

containing frequently used terms in the language. Abdul et al.

[22] discuss the lexical variations found in roman Urdu

language written on the Internet. They devise a phonetic

algorithm UrduPhone motivated from Soundex to map Urdu

strings to their phonetic equivalents.

Iqra et al. [23] performed sentiment classification of bilingual

(Roman Urdu and English) tweets related to Pakistan’s general

elections 2013. They filtered the relevant tweets and assigned

sentiment strength to 3900 Roman Urdu words in order to

create their own bilingual repository. Roman Urdu opinion

mining system (RUOMiS) proposed by Daud et al. [24] used

the key matching method to perform Roman Urdu opinion

mining. Adjectives of the opinions were matched with a

dictionary manually designed and were used to find polarity of

that opinion. Due to the noise in data, the accuracy was low as

RUOMiS categorized about 21.1% of the neutral comments

falsely. Muhammad Bilal et al. [25] conducted opinion mining

on Roman Urdu using three classification algorithms which are

NB, Decision Tree, and kNN. NB performs the best in Roman

Urdu in terms of accuracy, precision, recall, and F-measure.

Our paper contributes to the research in sentiment classification

of Roman Urdu text by using supervised machine learning

algorithms. The scarcity of labeled data in the desired language

is solved with a series of translation tools. The choice of feature

selection and extraction methods depends on the characteristics

of the given dataset. The effectiveness of a set of classifiers is

observed when they predict the polarity of the unseen samples

after learning the training data.

III. METHOD

The labeled Roman Urdu documents are preprocessed to

remove any irrelevant information. The important features are

extracted and the textual data is converted to a numerical

format. The stop words are removed and the features having the

highest chi-squared test scores are selected. The training and

testing datasets are formed from the original corpus. They are

converted into a sparse matrix where the number of rows is the

number of samples and the columns represent selected features.

The matrix is an argument of the machine learning algorithm

and is used in training and classifying the data. A diagrammatic

view of the method is shown in fig. 1.

A. Material

The dataset used in our work contains 1600 total documents

with an equal number of positive and negative reviews. The

work on sentiment analysis has been very limited in Urdu and

Roman Urdu languages. Roman Urdu is frequently written on

blogging websites, chat rooms and advertisements and by users

in the comment sections. The online text can be scraped and

processed but requires annotation to train the classifier.

In order to create a large and labeled sentiment corpus, we

performed the following steps. First, we downloaded a

publicly-accessible Hotel Reviews labeled data [26] in English.

We used Google Translate API to convert our data from English

to Urdu Script. The Google Translate API allows translation for

more than 50 languages. It performs better for short sentences

and faces limitations in differentiating between imperfect and

perfect tenses. For longer sentences, the structure of the

resulting output becomes convoluted; therefore, the overall

meaning is difficult to understand. We used an online Urdu

Script to Roman Urdu Transliteration tool [27] to convert our

labeled corpus in Urdu Script to Roman Urdu. We used a single

tool in transliteration, to ensure minimum variation in the

spellings of the words in Roman Urdu language. As a result, we

have 800 documents each of positive and negative reviews

available in Roman Urdu language [3].

Fig. 1. Schematic view of the proposed methodology

B. Data Preprocessing

The transliteration tool is not able to convert all the Urdu words

to Roman script. Hence, the documents have some unconverted

Urdu texts in between the sentences. A preprocessing step

before feature extraction removes all the numbers and special

characters from the documents. This step is to ensure that only

the relevant features are extracted and selected from the dataset.

C. Feature Extraction

An essential preprocessing step to machine learning problems

is feature extraction. It involves building feature vectors from

textual data to facilitate learning. A feature vector is an n-

dimensional vector representing the dataset with attributes that

can be binary (’male’ or ’female’ for gender), categorical (’A’,

’B’, ’AB’ or ’O’, for blood type), ordinal (’high’, ’low’ or

’medium’) or numerical (for example, the number of

occurrences of a word in a document).

An algebraic model for representing text documents as vectors

of identifiers is called the vector space model. Two features are

of main concern when we are indexing a term: statistical term

weighting and semantic term weighting. In statistical term

weighting, term weighting is based on the discriminative

supremacy of a term that appears in a document or a group of

documents. In semantic term weighting, term weighting is

based on a term’s meaning. Term Frequency-Inverse Document

Frequency (tf-idf) as well as normalized tf-idf is considered as

4

the most effective document weighting functions for

information retrieval and text categorization tasks [28].

The vectorization of the corpus to a sparse matrix is performed

by three methods:

1) Term Frequency-Inverse Document Frequency

(tf-idf)

Tf-idf is a statistical measure of the importance of a term to a

document in the corpus. The importance of the term is increased

with its frequency in the document but it is reduced when there

is an increase in the frequency of the term in the corpus. It is

composed of two terms: term frequency (TF) and inverse

document frequency (IDF) [29].

𝐭 𝐟𝐭,𝐝 × 𝐢𝐝𝐟𝐭 (1)

TF measures the frequency of a term within a document. For

normalization, the frequency is divided by the length of the

document. Normalization helps in preventing bias towards the

longer document as longer document have a higher frequency

of a term. Term frequency gives equal importance to every term

in the document.

𝑻 𝑭𝒕,𝒅 =
𝐟𝐫𝐞𝐪𝐮𝐞𝐧𝐜𝐲 𝐨𝐟 𝐚 𝐭𝐞𝐫𝐦 𝒕

𝐥𝐞𝐧𝐠𝐭𝐡 𝐨𝐟 𝐭𝐡𝐞 𝐝𝐨𝐜𝐮𝐦𝐞𝐧𝐭
 (2)

The terms which are not of much importance, such as ’as’, ’a’,

’the’, ’of’, usually have a higher frequency. Hence, such

frequent terms are required to be weighed down. While the

important terms, with a lower frequency, needs to be scaled up.

IDF is used to increase the importance of the relevant terms that

are less frequently used.

𝑰𝑫𝑭𝒕 = 𝐥𝐨𝐠 (

𝐧𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐝𝐨𝐜𝐮𝐦𝐞𝐧𝐭𝐬

𝐧𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐝𝐨𝐜𝐮𝐦𝐞𝐧𝐭𝐬 𝐰𝐢𝐭𝐡 𝐭𝐞𝐫𝐦 𝒕
) (3)

2) CountVectorizer

CountVectorizer transforms the document content into the
count matrix by tokenizing and counting the presence of the
feature [29]. It extracts the features of length greater than 2 by
tokenizing the sentences. It counts the presence of each feature
and creates a sparse matrix. For example, if we have the
following four sentences in Roman Urdu:

”Kamra ganda tha.”

”Kamra chota tha.”

”Kamra saaf tha.”

”Kamra pyaara tha.”

The features extracted from the sentences are ”kamra”,

”ganda”, ”tha”, ”chota”, ”saaf” and ”pyaara”. They will be

assigned a unique index corresponding to the column of the

matrix. These 4 sentences and 6 unique features will be

represented in a sparse matrix of size 4 X 6. The matrix will

look like Table I, where 1 represents the feature’s presence in

the document and 0 indicates its absence.

TABLE I. SPARSE MATRIX OF COUNTVECTORIZER

 Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 6

Sentence

1
1 1 1 0 0 0

Sentence

2
1 0 1 1 0 0

Sentence

3
1 0 1 0 1 0

Sentence

4
1 0 1 0 0 1

3) HashingVectorizer

HashingVectorizer combines hashing with the preprocessing

and tokenization features of the CountVectorizer [29]. It is fast

and stateless. The transformation performed by the

HashingVectorizer is irreversible. Hence, the original

representation of the features is impossible to access after the

hashing is done. It is used in parallel pipelining and for

performing vectorization of a vast text corpus.

HashingVectorizer is flexible when an application is likely to

receive new data. The larger the corpus is, the larger the

vocabulary will grow. Hence, more memory is used. The fitting

of data also requires memory for the intermediate data

structures of size proportional to the original dataset. Collisions

occur when two different tokens are mapped to the same feature

index.

D. Stop words Removal

Non-semantic words like articles, prepositions, conjunctions

and pronouns are usually described as stop words. They are

removed from the features because they hold little or no

information about the sentiment of the sentence [30], [31]. In

Roman Urdu, stops words can be pronouns like ’mein’, ’tum’,

’hum’ etc. that can confuse the classifier. A list of Urdu stop

words [32] is available on the Internet. By transliterating the

stop words to Roman Urdu script, we can filter the resulting

tokens from the feature extraction algorithms to make sure there

are no stop words in the feature vector. The use of a stop word

list reduces the features extracted from the training set from

1875 to 1770.

E. Feature Selection

Feature selection (also called as variable or attribute selection)

reduces the dimensionality of the sample sets. It involves

identifying and selecting relevant features from the data that

contribute to the accuracy of the predictive model. It simplifies

the predictive model and makes it easy to understand by

eliminating the redundant and unneeded attributes. It boosts

performance on very high-dimensional datasets by decreasing

5

the training time, increases classification accuracy and reduces

over-fitting. Feature extraction creates a set of features which

are composites of the original feature set whereas feature

selection forms a subset of the attributes occurring in the

original training set.

The four approaches related to feature selection are Filter,

Wrapper, Hybrid, and Embedded. Filter method uses

mathematical techniques to evaluate and derive a subset from

the entire set of features. It requires less computation and does

not depend on learning methods used by classifiers [33].

Wrapper approach evaluates features that are optimal for

classification with a predetermined learning algorithm. The

hybrid method combines the techniques used in filter and

wrapper approaches. It finds the best subset using an

independent measure and a learning algorithm. Embedded

method is a filter algorithm built with the classifiers and is more

efficient as compared to Wrapper approach. Recursive Feature

Elimination (RFE) is an example of Embedded method used in

SVM classifier.

In this paper, Filter method is used for the selection of a good

subset of the original features set. Methods used in Filter

approach are the Chi-squared test, Document Frequency (DF),

Information Gain (IG), Mutual Information (MI) and Term

Strength (TS).

Chi-squared test is a statistical test used to compute the

independence of two events, the occurrence of a term and

occurrence of a document [34]. Features for which the chi-

squared test gives the highest score are selected. A high score

shows that the occurrence of the term and class are dependent.

The features that have a low chi-squared score, i.e. they are

independent of the class, are irrelevant for classification.

For aggressive term removal, Chi-squared test and IG are most

effective and do not lose accuracy in text classification.

Compared to other methods, MI has the most inferior

performance due to its bias towards infrequent terms and

sensitivity to probability estimation errors [35].

F. Sentiment Classification

The two types of sentiment classifications are binary
classification and multi-class sentiment classification. In binary
classification, a feature, sentence or document is classified
according to the two polarities, positive or negative, favorable or
unfavorable. On the other hand, multi-class sentiment
classification can label the review to more than two classes, for
example positive, neutral, negative. In this paper, machine
learning algorithms are implemented on the selected features for
binary classification.

Supervised machine learning techniques require a training set,

containing feature vectors and their corresponding labels, and a

testing set [36]. The classifiers learn a set of rules from the

training corpus before they can be applied for testing. SVM,

kNN, Ensemble Classifier, Decision Tree Classifier, Nearest

Centroid, Perceptron, Passive Aggressive Classifier, Stochastic

Gradient Classifier, Ridge Classifier and NB are used to learn

and classify the Roman Urdu dataset.

IV. PERFORMANCE MEASURES

Confusion matrix visualizes the performance of a supervised

learning algorithm. The matrix shows the number of data

predicted correctly and incorrectly. In binary classification, any

document identified as positive by the classifiers and also

labeled as positive in the corpus is a true positive. Any

document which is predicted as positive but is actually negative

is a false positive.

TABLE II.CONFUSION MATRIX TABLE

 Actual Positive Actual Negative

Predicted Positive True Positive(TP) False Positive(FP)

Predicted Negative False Negative(FN) True Negative(TN)

TABLE III. PERFORMANCE METRICS FOR SENTIMENT
CLASSIFICATION

Performance Parameter Description

Accuracy
TP + TN

TP + TN + FP + FN

Precision
TP

TP + FP

Sensitivity
TP

TP + FN

Specificity
TN

FP + TN

F1-score
2TP

2TP + FP + FN

Accuracy, Sensitivity, Specificity, precision, and F1-score are

the performance evaluation parameters calculated from the

confusion matrix. Table III defines these metrics using the

terms in Table II. Accuracy is the ratio of correctly predicted

documents (sum of true positives and true negatives) by the

total number of documents in the corpus. Sensitivity (also

known as recall) shows the ability of the classifier to detect the

positive documents. Specificity is the ability to detect negative

documents. Sensitivity denotes true positive rate whereas

specificity shows the true negative rate of the techniques.

Precision gives the fraction of identified positive documents

which are true positive documents. F1-score is the harmonic

mean of precision and recall.

V. EXPERIMENTAL EVALUATION

The Roman Urdu labeled corpus has 1600 total reviews,

containing an equal number of positive and negative

documents. The dataset was split into training and testing sets

in such a way that both had the same number of positive and

negative reviews. For training, features were extracted from

1200 hotel reviews as an input to the classifier and the

6

remaining 400 documents were allocated for determining the

accuracy of the classifier.

After the preprocessing and vectorization of data, K features are

selected for classification using the chi-squared test. K is also

the number of columns in the sparse matrix. The performance

of classifiers is analyzed by varying the value of K. Training

time always reduces when K decreases, but the effect on

accuracy is different for each classifier. Most of the classifiers

show little change in their performance. However, kNN

exhibits a different behavior from other classifiers as can be

seen in the fig. 2. The value of K can change the accuracy of

kNN classifier from 53.5% to 89.75%.

Fig. 2. Accuracy of classifiers with different values of K using tf-idf vectorizer

TABLE IV. CONFUSION MATRIX FOR CLASSIFIERS WITH TF-IDF

VECTORIZER

Classifiers Precision Specificity Accuracy Sensitivity F1 Score

Decision Trees 0.76 0.79 0.78 0.78 0.77

Ridge Classifier 0.98 0.93 0.95 0.93 0.95

Perceptron 0.96 0.93 0.95 0.93 0.95

Passive Aggressive 0.94 0.91 0.92 0.91 0.92

SGD classifier 0.94 0.90 0.92 0.90 0.92

Bernoulli NB 0.90 0.93 0.91 0.92 0.91

Multinomial NB 0.96 0.95 0.95 0.95 0.95

Random Forest 0.95 0.90 0.92 0.90 0.92

kNN 0.16 1.00 0.59 1.00 0.30

Nearest Centroid 0.98 0.89 0.93 0.90 0.94

SVC(kernel=rbf) 0.98 0.89 0.93 0.89 0.93

SVC(kernel=linear) 0.98 0.94 0.96 0.94 0.96

LinearSVC() 0.98 0.93 0.96 0.93 0.96

The number of selected features is 1150 when the behavior of

classifiers with different vectorizers used for feature extraction

is investigated. Table IV-VI shows the statistical measures of

the performance of all the tested classifiers with tf-idf

vectorizer, CountVectorizer, and HashingVectorizer. Most of

the classifiers assign the test documents to correct classes since

the values of sensitivity and specificity are quite high.

Accuracy, precision, specificity, recall and F1-score were

calculated for all the classifiers using tf-idf, CountVectorizer,

and HashingVectorizer. Fig. 3-6 shows the effect of different

vectorizers on the classifiers. Most of the classifiers have little

variation in accuracy for the vectorizers used. Nearest centroid,

kNN and SVC with rbf kernel show the greatest variation, each

performing best with different vectorizer. kNN performs best

with HashingVectorizer at 81%, nearest centroid with tf-idf

with 91% and SVC with tf-idf at 91%. kNN performs poorly

with tf-idf vectorizer as opposed to other classifiers. Tf-idf

vectorization gives the best overall accuracy, precision, recall

and F1-score.

TABLE V. CONFUSION MATRIX FOR CLASSIFIERS WITH
COUNTVECTORIZER

Classifiers Precision Specificity Accuracy Sensitivity F1 Score

Decision Trees 0.79 0.80 0.80 0.80 0.79

Ridge Classifier 0.94 0.91 0.92 0.91 0.92

Perceptron 0.96 0.84 0.90 0.86 0.90

Passive Aggressive 0.93 0.91 0.92 0.91 0.92

SGD classifier 0.93 0.91 0.92 0.91 0.92

Bernoulli NB 0.88 0.91 0.89 0.90 0.89

Multinomial NB 0.97 0.93 0.95 0.93 0.95

Random Forest 0.96 0.87 0.91 0.88 0.92

kNN 0.63 0.95 0.79 0.92 0.75

Nearest Centroid 0.74 0.84 0.79 0.82 0.78

SVC(kernel=rbf) 0.90 0.92 0.91 0.91 0.91

SVC(kernel=linear) 0.93 0.88 0.90 0.89 0.90

LinearSVC() 0.93 0.90 0.92 0.90 0.92

TABLE VI. CONFUSION MATRIX FOR CLASSIFIERS WITH

HASHINGVECTORIZER

Classifiers Precision Specificity Accuracy Sensitivity F1 Score

Decision Trees 0.85 0.70 0.77 0.74 0.79

Ridge Classifier 0.98 0.90 0.94 0.91 0.94

Perceptron 0.95 0.88 0.91 0.88 0.91

Passive Aggressive 0.96 0.88 0.92 0.88 0.92

SGD classifier 0.95 0.93 0.94 0.93 0.94

Bernoulli NB 0.86 0.86 0.86 0.86 0.86

Multinomial NB 0.98 0.89 0.93 0.90 0.94

Random Forest 0.93 0.90 0.91 0.90 0.91

kNN 0.89 0.75 0.82 0.78 0.83

Nearest Centroid 0.91 0.82 0.86 0.83 0.87

SVC(kernel=rbf) 0.99 0.50 0.75 0.66 0.80

SVC(kernel=linear) 0.98 0.90 0.94 0.90 0.94

LinearSVC() 0.97 0.91 0.94 0.91 0.94

7

Fig. 3. Comparison of precision for tf-idf, CountVectorizer, and

HashingVectorizer

Fig. 4. Comparison of F1-score for tf-idf, CountVectorizer, and
HashingVectorizer

Fig. 5. Comparison of recall for tf-idf, CountVectorizer, and HashingVectorizer

Fig. 6. Comparison of accuracy for tf-idf, CountVectorizer, and
HashingVectorizer

Decision tree and kNN classifiers have the lowest performance

out of all the other classifiers. The accuracy, precision, recall

and F1-score of the decision tree in case of each vectorization

method is approximately 78% which is less than the other

classifiers. kNN performs poorly with an accuracy of 59% for

tf-idf vectorizer but gives the best results with

HashingVectorizer at 81%. kNN depends on the value of n,

which is the number of neighbors of the test data used in the

classification of the test point. The number of neighbors is

selected as an odd number between 1 and 20 to study the effect

on the performance of the kNN classifier when using tf-idf

vectorizer. The accuracy of the kNN classifier is maximum

when the value of k is 3.

Ridge classifier, multinomial NB, SVC with linear kernel and

linear SVC have the overall best performance at the accuracy

of around 96% with tf-idf vectorizer as compared to other

classifiers.

VI. CONCLUSION

Social media has become a platform for the public to share their

feelings and opinions about a product, brand or service.

Sentiment analysis is a measurement tool that extracts the

sentiment value of a sentence, paragraph or document. The

value of the sentiment can be either positive, negative or

neutral. The application of social analytics is founded in areas

like social media monitoring, tracking survey responses and

customer reviews, political sentiment determination and

predicting market movements based on news, blogs and

feedback.

Roman Urdu is a non-standard form of writing the Urdu

language on the Internet. Each user has their own way of

forming the Roman Urdu words, hence the spellings of the

terms are not consistent. In this paper, we identified the possible

issues in performing sentiment analysis on the Roman Urdu

language and the measures needed to increase the accuracy of

the classifiers.

The overall performance of the machine learning algorithms

depends on the dataset used in training. An annotated corpus is

not available in Roman Urdu, therefore a labeled English

dataset of hotel reviews is translated to the Urdu language and

then converted to Roman script. A single transliteration tool is

used to make sure there are no irregularities in spelling. The

longer sentences lose their structure during translation and

some Urdu words cannot be converted by the tool to Roman

script. The resulting corpus goes through preprocessing,

vectorization, elimination of stop words and irrelevant

attributes from its feature set before it is divided into training

and testing data.

Tf-idf is the term weighting model which gives best overall

accuracy with machine learning based classifiers. The number

of selected features in the sparse matrix affects the training time

and accuracy of the classifiers. SVM performs better than all of

the classifiers by giving 96% accuracy at 1150 features selected

8

from the original set initially extracted by tf-idf vectorization.

The accuracy of KNN has the most significant change as the

dimensionality of the matrix is reduced.

Machine learning techniques are simpler and often give better

results than the lexicon-based approach. The scope and

usability of this application can be increased by improving the

quality and size of the dataset involved in classification of the

hotel reviews. The work can be further extended by considering

the context in which some terms are used to get a better idea

about the sentiments of the review.

REFERENCES

[1] Shashca. (2012). Shashca: Youth ka newspaper, [Online]. Available:

http://www.shashca.com.

[2] SongLyrics. (2016). Song lyrics, [Online]. Available:
http://www.songlyrics.com/a-r-rahman/jai-ho-lyrics/.

[3] R. U. H. Dataset. (2016). Roman Urdu hotel dataset, [Online]. Available:
http://vision.seecs.edu.pk/sentimentanalysis/.

[4] A. Tripathy, A. Agrawal, and S. K. Rath, “Classification of sentimental
reviews using machine learning techniques,” Procedia Computer Science,
vol. 57, pp. 821– 829, 2015, ISSN: 18770509. DOI: 10.1016/j.procs.2015.
07.523.

[5] M. Moh, A. Gajjala, S. C. R. Gangireddy, and T.-S. Moh, “On multi-tier
sentiment analysis using supervised machine learning,” 2015.

[6] G. Gautam and D. yadav, “Sentiment analysis of twitter data using
machine learning approaches and semantic analysis,” 2014.

[7] V. A. Rohani and S. Shayaa, “Utilizing machine learning in sentiment
analysis: Sentirobo approach,” 2015.

[8] P. Waila, Marisha, V. K. Singh, and M. K. Singh, “Evaluating machine
learning and unsupervised semantic orientation approaches for sentiment
analysis of textual reviews,” 2012.

[9] V. K. Singh, R. Piryani, A. Uddin, P. Waila, and Marisha, “Sentiment
analysis of textual reviews,” 2013.

[10] W. Maharani, “Microblogging sentiment analysis with lexical based and
machine learning approaches,” 2013.

[11] N. M. S and R. R, “Sentiment analysis in twitter using machine learning
techniques,” 2013.

[12] B. LU and B. K. TSOU, “Combining a large sentiment lexicon and
machine learning for subjectivity classification,” 2010.

[13] H. Isah, P. Trundle, and D. Neagu, “Social media analysis for product
safety using text mining and sentiment analysis,” 2014.

[14] D. S. Nair, J. P. Jayan, R. R.R, and E. Sherly, “Sentiment analysis of
malayalam film review using machine learning techniques,” 2015.

[15] A. Mukwazvure and K. Supreethi, “A hybrid approach to sentiment
analysis of news comments,” 2015.

[16] Y. Huangfu, G. Wu, Y. Su, J. Li, P. Sun, and J. Hu, “An improved
sentiment analysis algorithm for chinese news,” 2015.

[17] P. Raina, “Sentiment analysis in news articles using sentic computing,”
2013.

[18] J. Serrano-Guerrero, J. A. Olivas, F. P. Romero, and E. H. Viedma,
“Sentiment analysis: A review and comparative analysis of web services,”
2015.

[19] A. Kaur and V. Gupta, “N-gram based approach for opinion mining of
punjabi text,” 2014.

[20] A. Z. Syed, M. Aslam, and A. M. Martinez-Enriquez, “Lexicon based
sentiment analysis of Urdu text using sentiunits,” 2010.

[21] T. Ahmed, “Roman to urdu transliteration using word list,” 2009.

[22] A. Rafae, A. Qayyum, M. Moeenuddin, A. Karim, H. Sajjad, and F.
Kamiran, “An unsupervised method for discovering lexical variations in
roman urdu informal text,” 2015.

[23] I. Javed and H. Afzal, “Opinion analysis of bi-lingual event data from
social networks,” 2013.

[24] M. Daud, R. Khan, Mohibullah, and A. Daud, “Roman urdu opinion
mining system,” 2014.

[25] M. Bilal, H. Israr, M. Shahid, and A. Khan, “Sentiment classification of
roman-urdu opinions using naive bayesian, decision tree and knn
classification techniques,” 2015.

[26] C. H. Dataset. (2016). Chinese hotel dataset, [Online]. Available:
http://myleott.com/op_spam/.

[27] Ijunoon. (2016). Ijunoon transliteration, [Online]. Available:
http://www.ijunoon.com/transliteration/urdu- to-roman.

[28] M. Abdel Fattah and F. Ren, “Ga, mr, ffnn, pnn and gmm based models
for automatic text summarization,” 2012.

[29] G. Moncecchi and R. Garreta, Learning Scikit-Learn: Machine Learning
in Python. Packt Publishing Ltd., 2013.

[30] W. J. Wilbur and K. Sirotkin, “The automatic identification of stop
words,” Journal of information science, vol. 18, no. 1, pp. 45–55, 1992.

[31] C. Fox, “A stop list for general text,” in ACM SIGIR Forum, ACM, vol.
24, 1989, pp. 19–21.

[32] R. NL. (2016). Ranks nl webmaster tools, [Online]. Available:
http://www.ranks.nl/stopwords/urdu.

[33] M. A. Hall and L. A. Smith, “Feature selection for machine learning:
Comparing a correlation-based fil-ter approach to the wrapper.,” in
FLAIRS conference, vol. 1999, 1999, pp. 235–239.

[34] M. G. Akritasa, “Pearson-type goodness-of-fit tests: The univariate case,”
1988.

[35] Y. Yang and J. O. Pedersen, “A comparative study on feature selection in
text categorization,” 1997.

[36] B. Pang and L. Lee, “Thumbs up? sentiment classification using machine
learning techniques,” 2002.

