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Abstract— The usage of online platforms to receive feedback, 

opinion or remarks of the public about a particular subject has 

become very common. Sentiment analysis is used to understand 

the latest trends, summarize the general opinion and investigate 

the cognitive human behavior. This paper performs sentiment 

analysis on Roman Urdu dataset and reports on the experimental 

results produced by different classifiers using feature selection and 

representation. After translating a pre-existing English hotel 

reviews dataset to Roman Urdu, the resulting corpus is analyzed 

by employing machine learning approach for classification 

purposes. The result of social analytics can assist organizations in 

applying the proposed methodology to the collective sentiment 

intelligence embedded in customers’ feedback in order to improve 

their product, services, and marketing strategies. 
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I.  INTRODUCTION  

The use of the Internet around the world has created vast 

amounts of user-generated data. The rise in social media has 

changed the way people view, create and share information. 

Sites like Twitter and Facebook have become interactive 

platforms where users openly share their opinions. For 

organizations and consumers, these platforms are a great way 

of knowing the opinions, feedback, and mindset of a large 

number of people. It has become increasingly difficult to 

process this steady stream of content. Sentiment Analysis (also 

known as opinion mining) is a tool used to extract, analyze and 

summarize textual information and discover the cognitive 

behavior of humans. It determines whether the given sentence 

is positive or negative in the context of human emotional 

behavior. It opens up opportunities for marketing teams, 

celebrities, politicians, and anyone concerned with opinions and 

moods of the general public. 

 

There have been namely two methods to find the sentiment 

polarity of textual data: corpus-based and lexicon-based. 

Corpus-based sentiment analysis trains a machine learning 

classifier on a labeled sentiment corpus. The performance of the 

classifier depends on the quantity and quality of the training 

data. Lexicon-based sentiment analysis finds the polarity of 

every word or phrase in a text document with the use of a 

sentiment lexicon. The two ways to perform sentiment analysis 

using lexicons is by either using a dictionary or a corpus. The 

dictionary-based approach uses an existing dictionary that 

contains a collection of words with their sentiment strength. A 

lexicon-based approach using corpus searches through vast 

amounts of data to find the probability of a term occurring in 

conjunction with the positive or negative set of words.  
 

In order to extract market intelligence embedded in online 

comments, sentiment analysis needs to cater for a wider set of 

languages. The Urdu language is spoken and understood in 

major parts of Asia. In both script and morphology, it is a 

different language from English. Whereas Roman Urdu is the 

Urdu language written with the Roman alphabet. It is a 

universal, non-standard mode of communication among Urdu-

speaking Internet users. This language is also used for poetry, 

marketing, blogs, online news, commercials, music and films in 

South Asia and the Middle East [1], [2]. 

 

Roman Urdu is a non-standard language used frequently on the 

Internet. It has many irregularities in spellings. For example, the 

word khubsurat (beautiful) in Roman Urdu has multiple 

spellings. It can also be written as khoobsurat, khubsoorat, and 

khobsorat. These words have the same meaning, but the 

spelling varies according to the user. Another problem arises 

when two words in Roman Urdu are spelled identically but are 

lexically different, for example, aam means both mango and 

common. In order to ensure quality in our training corpus, the 

spelling of a word needs to remain consistent throughout its use. 

 

Research on sentiment analysis has been mostly conducted on 

a small number of languages. There is a scarcity of annotated 

corpora in other languages. Facebook and Twitter APIs are 

useful in extracting public comments posted on social media but 

the manual labeling of data is a tedious and time-consuming 

task. A solution to this problem is semi-supervised learning. 

Semi-supervised self-training tries to automatically label 

examples from unlabeled data and add them to the initial 

training set in each cycle. Alternatively, an existing labeled 
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corpus can be translated to the target language for the 

generation of a dataset.  

 

Support vector machine classifier (SVM), Ensemble 

Classifiers, K-Nearest Neighbors (kNN), Nearest Centroid, 

Linear Classifiers, Decision Tree and Naive Bayes (NB) 

Classifier are used to investigate the effectiveness of sentiment 

analysis on Roman Urdu with different term weighting and 

selection schemes. In order to facilitate research in Roman 

Urdu, the annotated corpus used for training and classification 

of text in this paper is available for download [3]. 

 

The paper is organized as follows: Section II gives a brief 

overview of related work in sentiment analysis, Section III 

illustrates the methodology followed in the paper, Section IV 

discusses the performance measures used in evaluating the 

classifiers, Section V uses figures and tables to describe the 

experimental results and Section VI concludes the paper along 

with a description of future works. 

 

II. RELATED WORK 

A. Sentiment Analysis using machine learning  

In recent years, the field of sentiment analysis has 

encouraged a lot of research albeit in limited languages. Abinash 

et al. [4] have done sentiment classification by machine learning 

methods. The vectorization of features is done using two 

methods CountVectorizer and tf-idf. They have used NB and 

SVM classification algorithm to determine the polarity of 

English reviews and achieved an accuracy of 89.5% and 94.0% 

respectively. Another machine learning approach by Melody 

Moh et al. [5] makes use of a multi-tier classification 

architecture consisting of data collection, preprocessing, feature 

selection, classification and evaluation measures. The machine 

learning algorithms, SGD, SVM, NB and Random forest 

classifier, perform with accuracies above 80%. Geetika Gautam 

et al. [6] preprocessed the data collected from twitter, extracted 

sentiment words and used machine learning to classify the data. 

Semantic analysis is achieved with English WordNet that 

extracts the adjective from the sentence. It performs the highest 

accuracy of 89.9%, followed by NB with 88.2% accuracy, SVM 

with 85.5% accuracy and Maximum Entropy has the lowest 

classification prediction with 83.8%. For sentiment 

classification Vala Ali Rohani et al. [7] propose SentiRobo, a 

supervised machine learning approach and enhanced version of 

NB algorithm. P. Waila et al. [8] compare unsupervised 

semantic orientation based SO-PMI-IR algorithm with 

supervised classifiers NB and SVM to classify movie reviews. 

The SO-PMI-IR algorithm obtains the highest accuracy of 88% 

but it is time-consuming due to large computation of Pointwise 

Mutual Information (PMI) values. Further comparison by V.K 

Singh et al. [9] involves SentiWordNet and proves that NB 

performs better than SVM in classification. SentiWordNet has 

the minimum computation time as it needs no training but has 

the lowest performance with accuracy level around 65%. 

Warih Maharani [10] compares sentiment analysis 

performance by the two approaches, lexical based and machine 

learning based, with Indonesian language using Twitter. 

Machine learning approach produces better accuracy with SVM 

i.e. 81.43%, as compared to lexical based approach having 

74.59% accuracy without stemming. Neethu et al. [11] created 

their own feature vector by giving positive keywords the label 

’1’ and negative as ’-1’. Emoticons and hashtags inside a tweet 

are also labeled. If the keyword doesn’t exist, then it is given as 

’0’. The vector is used in the classification of the tweets with 

the help of SVM, NB, Maximum Entropy and Ensemble 

Classifiers. The accuracy is close to 90.0% for all the 

algorithms. Bin Lu et al [12] combined large sentiment lexicon 

and machine learning techniques and used this approach for 

subjectivity classification. Human-annotated lexicons and the 

annotated corpus were both used. This approach combined with 

SVM outperforms with an accuracy of 74-75% as compared to 

the machine learning techniques themselves alone. Haruna Isah 

et al. [13] compares lexicon and machine learning scores when 

analyzing sentiment in product reviews on the Web. Both 

methods give similar negative scores but their positive and 

neutral scores vary sharply. The NB classifier gave a total of 

83% accuracy. Deepu S. Nair et al. [14] use SVM and 

Conditional Random Field (CRF) to check the polarity of 

Malayalam film reviews. After the collection of data, the corpus 

was manually tagged with respect to the context of the term in 

the sentence. SVM performs better than CRF and accuracy of 

91% is achieved. A hybrid approach to sentiment analysis of 

news comments by Addlight Mukwazvure et al. [15] involve 

using sentiment lexicon for polarity detection and using its 

results to train machine learning algorithms, SVM, and kNN. 

Yu Huangfu et al. [16] introduce Improved Sentiment Analysis 

(ISA) which analyzes Chinese news with an algorithm of 

subjective sentences recognition and subject word recognition. 

General Sentiment Analysis (GSA) by Prashant Raina [17] is 

compared with ISA and ISA proves to be faster and more 

accurate. Serrano-Guerrero et al. [18] reviews and compares 

fifteen free web services that provide sentiment analysis by 

their ability to classify text as positive, negative or neutral, and 

measuring the intensity of each detected sentiment. Amandeep 

Kaur et al. [19] conduct a hybrid research approach consisting 

of N-grams model and NB for sentiment analysis of the Punjabi 

text. NB classifier trains on the features extracted from the N-

grams model. When the results were compared with existing 

methods, the accuracy of hybrid approach appeared to be 

effective. 

B.  Sentiment Analysis in the Urdu language 

The work on sentiment analysis is still in initial stages for the 

Urdu language, especially in the Roman version. In Urdu 

Script, Afraz Z. Syed et al. [20] used sentiment-annotated 

lexicon-based approach and identified and extracted SentiUnits 

(expressions containing sentiment information) from Urdu texts 

with the help of shallow parsing. They produced an accuracy of 

72.0% on movies reviews and 78.0% on product reviews. 

Tafseer Ahmed [21] proposes a method to transliterate Urdu in 

the roman script to Urdu script. He identifies the different 
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spelling rules used in roman Urdu and encodes each word 

according to an encoding scheme to match it with a word list 

containing frequently used terms in the language. Abdul et al. 

[22] discuss the lexical variations found in roman Urdu 

language written on the Internet. They devise a phonetic 

algorithm UrduPhone motivated from Soundex to map Urdu 

strings to their phonetic equivalents. 

 

Iqra et al. [23] performed sentiment classification of bilingual 

(Roman Urdu and English) tweets related to Pakistan’s general 

elections 2013. They filtered the relevant tweets and assigned 

sentiment strength to 3900 Roman Urdu words in order to 

create their own bilingual repository. Roman Urdu opinion 

mining system (RUOMiS) proposed by Daud et al. [24] used 

the key matching method to perform Roman Urdu opinion 

mining. Adjectives of the opinions were matched with a 

dictionary manually designed and were used to find polarity of 

that opinion. Due to the noise in data, the accuracy was low as 

RUOMiS categorized about 21.1% of the neutral comments 

falsely. Muhammad Bilal et al. [25] conducted opinion mining 

on Roman Urdu using three classification algorithms which are 

NB, Decision Tree, and kNN. NB performs the best in Roman 

Urdu in terms of accuracy, precision, recall, and F-measure. 

 

Our paper contributes to the research in sentiment classification 

of Roman Urdu text by using supervised machine learning 

algorithms. The scarcity of labeled data in the desired language 

is solved with a series of translation tools. The choice of feature 

selection and extraction methods depends on the characteristics 

of the given dataset. The effectiveness of a set of classifiers is 

observed when they predict the polarity of the unseen samples 

after learning the training data. 

III.  METHOD 

The labeled Roman Urdu documents are preprocessed to 

remove any irrelevant information. The important features are 

extracted and the textual data is converted to a numerical 

format. The stop words are removed and the features having the 

highest chi-squared test scores are selected. The training and 

testing datasets are formed from the original corpus. They are 

converted into a sparse matrix where the number of rows is the 

number of samples and the columns represent selected features. 

The matrix is an argument of the machine learning algorithm 

and is used in training and classifying the data. A diagrammatic 

view of the method is shown in fig. 1. 

A. Material 

The dataset used in our work contains 1600 total documents 

with an equal number of positive and negative reviews. The 

work on sentiment analysis has been very limited in Urdu and 

Roman Urdu languages. Roman Urdu is frequently written on 

blogging websites, chat rooms and advertisements and by users 

in the comment sections. The online text can be scraped and 

processed but requires annotation to train the classifier. 

 

In order to create a large and labeled sentiment corpus, we 

performed the following steps. First, we downloaded a 

publicly-accessible Hotel Reviews labeled data [26] in English. 

We used Google Translate API to convert our data from English 

to Urdu Script. The Google Translate API allows translation for 

more than 50 languages. It performs better for short sentences 

and faces limitations in differentiating between imperfect and 

perfect tenses. For longer sentences, the structure of the 

resulting output becomes convoluted; therefore, the overall 

meaning is difficult to understand. We used an online Urdu 

Script to Roman Urdu Transliteration tool [27] to convert our 

labeled corpus in Urdu Script to Roman Urdu. We used a single 

tool in transliteration, to ensure minimum variation in the 

spellings of the words in Roman Urdu language. As a result, we 

have 800 documents each of positive and negative reviews 

available in Roman Urdu language [3]. 
 

 

Fig. 1. Schematic view of the proposed methodology 

 

B. Data Preprocessing 

The transliteration tool is not able to convert all the Urdu words 

to Roman script. Hence, the documents have some unconverted 

Urdu texts in between the sentences. A preprocessing step 

before feature extraction removes all the numbers and special 

characters from the documents. This step is to ensure that only 

the relevant features are extracted and selected from the dataset. 

C. Feature Extraction 

An essential preprocessing step to machine learning problems 

is feature extraction. It involves building feature vectors from 

textual data to facilitate learning. A feature vector is an n-

dimensional vector representing the dataset with attributes that 

can be binary (’male’ or ’female’ for gender), categorical (’A’, 

’B’, ’AB’ or ’O’, for blood type), ordinal (’high’, ’low’ or 

’medium’) or numerical (for example, the number of 

occurrences of a word in a document). 

 

An algebraic model for representing text documents as vectors 

of identifiers is called the vector space model. Two features are 

of main concern when we are indexing a term: statistical term 

weighting and semantic term weighting. In statistical term 

weighting, term weighting is based on the discriminative 

supremacy of a term that appears in a document or a group of 

documents. In semantic term weighting, term weighting is 

based on a term’s meaning. Term Frequency-Inverse Document 

Frequency (tf-idf) as well as normalized tf-idf is considered as 
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the most effective document weighting functions for 

information retrieval and text categorization tasks [28]. 

 

The vectorization of the corpus to a sparse matrix is performed 

by three methods: 

 

1) Term Frequency-Inverse Document Frequency 

(tf-idf) 

Tf-idf is a statistical measure of the importance of a term to a 

document in the corpus. The importance of the term is increased 

with its frequency in the document but it is reduced when there 

is an increase in the frequency of the term in the corpus. It is 

composed of two terms: term frequency (TF) and inverse 

document frequency (IDF) [29]. 
 

𝐭 𝐟𝐭,𝐝 ×  𝐢𝐝𝐟𝐭   (1) 

 

TF measures the frequency of a term within a document. For 

normalization, the frequency is divided by the length of the 

document. Normalization helps in preventing bias towards the 

longer document as longer document have a higher frequency 

of a term.  Term frequency gives equal importance to every term 

in the document. 
 

𝑻 𝑭𝒕,𝒅  =  
𝐟𝐫𝐞𝐪𝐮𝐞𝐧𝐜𝐲 𝐨𝐟 𝐚 𝐭𝐞𝐫𝐦 𝒕

𝐥𝐞𝐧𝐠𝐭𝐡 𝐨𝐟 𝐭𝐡𝐞 𝐝𝐨𝐜𝐮𝐦𝐞𝐧𝐭
                      (2) 

 

The terms which are not of much importance, such as ’as’, ’a’, 

’the’, ’of’, usually have a higher frequency. Hence, such 

frequent terms are required to be weighed down. While the 

important terms, with a lower frequency, needs to be scaled up. 

IDF is used to increase the importance of the relevant terms that 

are less frequently used. 

  
𝑰𝑫𝑭𝒕 =  𝐥𝐨𝐠 (

𝐧𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐝𝐨𝐜𝐮𝐦𝐞𝐧𝐭𝐬

𝐧𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐝𝐨𝐜𝐮𝐦𝐞𝐧𝐭𝐬 𝐰𝐢𝐭𝐡 𝐭𝐞𝐫𝐦 𝒕
)        (3) 

 

2) CountVectorizer 

CountVectorizer transforms the document content into the 
count matrix by tokenizing and counting the presence of the 
feature [29]. It extracts the features of length greater than 2 by 
tokenizing the sentences. It counts the presence of each feature 
and creates a sparse matrix. For example, if we have the 
following four sentences in Roman Urdu: 

”Kamra ganda tha.” 

”Kamra chota tha.” 

”Kamra saaf tha.” 

”Kamra pyaara tha.” 

 
The features extracted from the sentences are ”kamra”, 

”ganda”, ”tha”, ”chota”, ”saaf” and ”pyaara”. They will be 

assigned a unique index corresponding to the column of the 

matrix. These 4 sentences and 6 unique features will be 

represented in a sparse matrix of size 4 X 6. The matrix will 

look like Table I, where 1 represents the feature’s presence in 

the document and 0 indicates its absence. 

 

 
TABLE I. SPARSE MATRIX OF COUNTVECTORIZER 

 

 Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 6 

Sentence 

1 
1 1 1 0 0 0 

Sentence 

2 
1 0 1 1 0 0 

Sentence 

3 
1 0 1 0 1 0 

Sentence 

4 
1 0 1 0 0 1 

 

3) HashingVectorizer 

HashingVectorizer combines hashing with the preprocessing 

and tokenization features of the CountVectorizer [29]. It is fast 

and stateless. The transformation performed by the 

HashingVectorizer is irreversible. Hence, the original 

representation of the features is impossible to access after the 

hashing is done. It is used in parallel pipelining and for 

performing vectorization of a vast text corpus. 

HashingVectorizer is flexible when an application is likely to 

receive new data. The larger the corpus is, the larger the 

vocabulary will grow. Hence, more memory is used. The fitting 

of data also requires memory for the intermediate data 

structures of size proportional to the original dataset. Collisions 

occur when two different tokens are mapped to the same feature 

index. 

D. Stop words Removal 

Non-semantic words like articles, prepositions, conjunctions 

and pronouns are usually described as stop words. They are 

removed from the features because they hold little or no 

information about the sentiment of the sentence [30], [31]. In 

Roman Urdu, stops words can be pronouns like ’mein’, ’tum’, 

’hum’ etc. that can confuse the classifier. A list of Urdu stop 

words [32] is available on the Internet. By transliterating the 

stop words to Roman Urdu script, we can filter the resulting 

tokens from the feature extraction algorithms to make sure there 

are no stop words in the feature vector. The use of a stop word 

list reduces the features extracted from the training set from 

1875 to 1770. 

 

E. Feature Selection 

Feature selection (also called as variable or attribute selection) 

reduces the dimensionality of the sample sets. It involves 

identifying and selecting relevant features from the data that 

contribute to the accuracy of the predictive model. It simplifies 

the predictive model and makes it easy to understand by 

eliminating the redundant and unneeded attributes. It boosts 

performance on very high-dimensional datasets by decreasing 
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the training time, increases classification accuracy and reduces 

over-fitting. Feature extraction creates a set of features which 

are composites of the original feature set whereas feature 

selection forms a subset of the attributes occurring in the 

original training set. 

 

The four approaches related to feature selection are Filter, 

Wrapper, Hybrid, and Embedded. Filter method uses 

mathematical techniques to evaluate and derive a subset from 

the entire set of features. It requires less computation and does 

not depend on learning methods used by classifiers [33]. 

Wrapper approach evaluates features that are optimal for 

classification with a predetermined learning algorithm. The 

hybrid method combines the techniques used in filter and 

wrapper approaches. It finds the best subset using an 

independent measure and a learning algorithm. Embedded 

method is a filter algorithm built with the classifiers and is more 

efficient as compared to Wrapper approach. Recursive Feature 

Elimination (RFE) is an example of Embedded method used in 

SVM classifier. 

 

In this paper, Filter method is used for the selection of a good 

subset of the original features set. Methods used in Filter 

approach are the Chi-squared test, Document Frequency (DF), 

Information Gain (IG), Mutual Information (MI) and Term 

Strength (TS). 

 

Chi-squared test is a statistical test used to compute the 

independence of two events, the occurrence of a term and 

occurrence of a document [34]. Features for which the chi-

squared test gives the highest score are selected. A high score 

shows that the occurrence of the term and class are dependent. 

The features that have a low chi-squared score, i.e. they are 

independent of the class, are irrelevant for classification. 

 

For aggressive term removal, Chi-squared test and IG are most 

effective and do not lose accuracy in text classification. 

Compared to other methods, MI has the most inferior 

performance due to its bias towards infrequent terms and 

sensitivity to probability estimation errors [35]. 

F. Sentiment Classification 

The two types of sentiment classifications are binary 
classification and multi-class sentiment classification. In binary 
classification, a feature, sentence or document is classified 
according to the two polarities, positive or negative, favorable or 
unfavorable. On the other hand, multi-class sentiment 
classification can label the review to more than two classes, for 
example positive, neutral, negative. In this paper, machine 
learning algorithms are implemented on the selected features for 
binary classification. 

Supervised machine learning techniques require a training set, 

containing feature vectors and their corresponding labels, and a 

testing set [36]. The classifiers learn a set of rules from the 

training corpus before they can be applied for testing. SVM, 

kNN, Ensemble Classifier, Decision Tree Classifier, Nearest 

Centroid, Perceptron, Passive Aggressive Classifier, Stochastic 

Gradient Classifier, Ridge Classifier and NB are used to learn 

and classify the Roman Urdu dataset. 

IV. PERFORMANCE MEASURES 

Confusion matrix visualizes the performance of a supervised 

learning algorithm. The matrix shows the number of data 

predicted correctly and incorrectly. In binary classification, any 

document identified as positive by the classifiers and also 

labeled as positive in the corpus is a true positive. Any 

document which is predicted as positive but is actually negative 

is a false positive. 
 

TABLE II.CONFUSION MATRIX TABLE 

 

 Actual Positive Actual Negative 

Predicted Positive True Positive(TP) False Positive(FP) 

Predicted Negative False Negative(FN) True Negative(TN) 
 

TABLE III. PERFORMANCE METRICS FOR SENTIMENT 
CLASSIFICATION 

 

Performance Parameter Description 

Accuracy 
TP + TN 

TP + TN + FP + FN
 

Precision 
TP

TP + FP
 

Sensitivity 
TP

TP + FN
 

Specificity 
TN

FP + TN
 

F1-score 
2TP

2TP + FP + FN
 

 

Accuracy, Sensitivity, Specificity, precision, and F1-score are 

the performance evaluation parameters calculated from the 

confusion matrix. Table III defines these metrics using the 

terms in Table II. Accuracy is the ratio of correctly predicted 

documents (sum of true positives and true negatives) by the 

total number of documents in the corpus. Sensitivity (also 

known as recall) shows the ability of the classifier to detect the 

positive documents. Specificity is the ability to detect negative 

documents. Sensitivity denotes true positive rate whereas 

specificity shows the true negative rate of the techniques. 

Precision gives the fraction of identified positive documents 

which are true positive documents. F1-score is the harmonic 

mean of precision and recall. 

V. EXPERIMENTAL EVALUATION 

The Roman Urdu labeled corpus has 1600 total reviews, 

containing an equal number of positive and negative 

documents. The dataset was split into training and testing sets 

in such a way that both had the same number of positive and 

negative reviews. For training, features were extracted from 

1200 hotel reviews as an input to the classifier and the 
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remaining 400 documents were allocated for determining the 

accuracy of the classifier. 

 

After the preprocessing and vectorization of data, K features are 

selected for classification using the chi-squared test. K is also 

the number of columns in the sparse matrix. The performance 

of classifiers is analyzed by varying the value of K. Training 

time always reduces when K decreases, but the effect on 

accuracy is different for each classifier. Most of the classifiers 

show little change in their performance. However, kNN 

exhibits a different behavior from other classifiers as can be 

seen in the fig. 2. The value of K can change the accuracy of 

kNN classifier from 53.5% to 89.75%. 
 

 

Fig. 2. Accuracy of classifiers with different values of K using tf-idf vectorizer 

 
TABLE IV. CONFUSION MATRIX FOR CLASSIFIERS WITH TF-IDF 

VECTORIZER 

Classifiers Precision Specificity Accuracy Sensitivity F1 Score 

Decision Trees 0.76 0.79 0.78 0.78 0.77 

Ridge Classifier 0.98 0.93 0.95 0.93 0.95 

Perceptron 0.96 0.93 0.95 0.93 0.95 

Passive Aggressive 0.94 0.91 0.92 0.91 0.92 

SGD classifier 0.94 0.90 0.92 0.90 0.92 

Bernoulli NB 0.90 0.93 0.91 0.92 0.91 

Multinomial NB 0.96 0.95 0.95 0.95 0.95 

Random Forest 0.95 0.90 0.92 0.90 0.92 

kNN 0.16 1.00 0.59 1.00 0.30 

Nearest Centroid 0.98 0.89 0.93 0.90 0.94 

SVC(kernel=rbf) 0.98 0.89 0.93 0.89 0.93 

SVC(kernel=linear) 0.98 0.94 0.96 0.94 0.96 

LinearSVC() 0.98 0.93 0.96 0.93 0.96 

 

The number of selected features is 1150 when the behavior of 

classifiers with different vectorizers used for feature extraction 

is investigated. Table IV-VI shows the statistical measures of 

the performance of all the tested classifiers with tf-idf 

vectorizer, CountVectorizer, and HashingVectorizer. Most of 

the classifiers assign the test documents to correct classes since 

the values of sensitivity and specificity are quite high. 

 

Accuracy, precision, specificity, recall and F1-score were 

calculated for all the classifiers using tf-idf, CountVectorizer, 

and HashingVectorizer. Fig. 3-6 shows the effect of different 

vectorizers on the classifiers. Most of the classifiers have little 

variation in accuracy for the vectorizers used. Nearest centroid, 

kNN and SVC with rbf kernel show the greatest variation, each 

performing best with different vectorizer. kNN performs best 

with HashingVectorizer at 81%, nearest centroid with tf-idf 

with 91% and SVC with tf-idf at 91%. kNN performs poorly 

with tf-idf vectorizer as opposed to other classifiers. Tf-idf 

vectorization gives the best overall accuracy, precision, recall 

and F1-score. 
 

TABLE V. CONFUSION MATRIX FOR CLASSIFIERS WITH 
COUNTVECTORIZER 

 
Classifiers Precision Specificity Accuracy Sensitivity F1 Score 

Decision Trees 0.79 0.80 0.80 0.80 0.79 

Ridge Classifier 0.94 0.91 0.92 0.91 0.92 

Perceptron 0.96 0.84 0.90 0.86 0.90 

Passive Aggressive 0.93 0.91 0.92 0.91 0.92 

SGD classifier 0.93 0.91 0.92 0.91 0.92 

Bernoulli NB 0.88 0.91 0.89 0.90 0.89 

Multinomial NB 0.97 0.93 0.95 0.93 0.95 

Random Forest 0.96 0.87 0.91 0.88 0.92 

kNN 0.63 0.95 0.79 0.92 0.75 

Nearest Centroid 0.74 0.84 0.79 0.82 0.78 

SVC(kernel=rbf) 0.90 0.92 0.91 0.91 0.91 

SVC(kernel=linear) 0.93 0.88 0.90 0.89 0.90 

LinearSVC() 0.93 0.90 0.92 0.90 0.92 

 
 

TABLE VI. CONFUSION MATRIX FOR CLASSIFIERS WITH 

HASHINGVECTORIZER 
 

Classifiers Precision Specificity Accuracy Sensitivity F1 Score 

Decision Trees 0.85 0.70 0.77 0.74 0.79 

Ridge Classifier 0.98 0.90 0.94 0.91 0.94 

Perceptron 0.95 0.88 0.91 0.88 0.91 

Passive Aggressive 0.96 0.88 0.92 0.88 0.92 

SGD classifier 0.95 0.93 0.94 0.93 0.94 

Bernoulli NB 0.86 0.86 0.86 0.86 0.86 

Multinomial NB 0.98 0.89 0.93 0.90 0.94 

Random Forest 0.93 0.90 0.91 0.90 0.91 

kNN 0.89 0.75 0.82 0.78 0.83 

Nearest Centroid 0.91 0.82 0.86 0.83 0.87 

SVC(kernel=rbf) 0.99 0.50 0.75 0.66 0.80 

SVC(kernel=linear) 0.98 0.90 0.94 0.90 0.94 

LinearSVC() 0.97 0.91 0.94 0.91 0.94 
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Fig. 3. Comparison of precision for tf-idf, CountVectorizer, and 

HashingVectorizer 

 

 

Fig. 4. Comparison of F1-score for tf-idf, CountVectorizer, and 
HashingVectorizer 

 

 

Fig. 5. Comparison of recall for tf-idf, CountVectorizer, and HashingVectorizer 

 

 

Fig. 6. Comparison of accuracy for tf-idf, CountVectorizer, and 
HashingVectorizer 

 

Decision tree and kNN classifiers have the lowest performance 

out of all the other classifiers. The accuracy, precision, recall 

and F1-score of the decision tree in case of each vectorization 

method is approximately 78% which is less than the other 

classifiers. kNN performs poorly with an accuracy of 59% for 

tf-idf vectorizer but gives the best results with 

HashingVectorizer at 81%. kNN depends on the value of n, 

which is the number of neighbors of the test data used in the 

classification of the test point. The number of neighbors is 

selected as an odd number between 1 and 20 to study the effect 

on the performance of the kNN classifier when using tf-idf 

vectorizer. The accuracy of the kNN classifier is maximum 

when the value of k is 3. 

 

Ridge classifier, multinomial NB, SVC with linear kernel and 

linear SVC have the overall best performance at the accuracy 

of around 96% with tf-idf vectorizer as compared to other 

classifiers. 

VI.  CONCLUSION 

Social media has become a platform for the public to share their 

feelings and opinions about a product, brand or service. 

Sentiment analysis is a measurement tool that extracts the 

sentiment value of a sentence, paragraph or document. The 

value of the sentiment can be either positive, negative or 

neutral. The application of social analytics is founded in areas 

like social media monitoring, tracking survey responses and 

customer reviews, political sentiment determination and 

predicting market movements based on news, blogs and 

feedback. 

 

Roman Urdu is a non-standard form of writing the Urdu 

language on the Internet. Each user has their own way of 

forming the Roman Urdu words, hence the spellings of the 

terms are not consistent. In this paper, we identified the possible 

issues in performing sentiment analysis on the Roman Urdu 

language and the measures needed to increase the accuracy of 

the classifiers. 

 

The overall performance of the machine learning algorithms 

depends on the dataset used in training. An annotated corpus is 

not available in Roman Urdu, therefore a labeled English 

dataset of hotel reviews is translated to the Urdu language and 

then converted to Roman script. A single transliteration tool is 

used to make sure there are no irregularities in spelling. The 

longer sentences lose their structure during translation and 

some Urdu words cannot be converted by the tool to Roman 

script. The resulting corpus goes through preprocessing, 

vectorization, elimination of stop words and irrelevant 

attributes from its feature set before it is divided into training 

and testing data. 

 

Tf-idf is the term weighting model which gives best overall 

accuracy with machine learning based classifiers. The number 

of selected features in the sparse matrix affects the training time 

and accuracy of the classifiers. SVM performs better than all of 

the classifiers by giving 96% accuracy at 1150 features selected 
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from the original set initially extracted by tf-idf vectorization. 

The accuracy of KNN has the most significant change as the 

dimensionality of the matrix is reduced. 

 

Machine learning techniques are simpler and often give better 

results than the lexicon-based approach. The scope and 

usability of this application can be increased by improving the 

quality and size of the dataset involved in classification of the 

hotel reviews. The work can be further extended by considering 

the context in which some terms are used to get a better idea 

about the sentiments of the review. 
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