University of Management and Technology

Course Outline

Course code: EE 315 **Course title:** Signals and Systems

Program	BSEE & BS(H)
Credit Hours	3
Duration	One semester
Prerequisites	None
Resource Person	Dr. Farhat Kaleem
Counseling Timing (Room # 501)	Tuesday and Thursday 12 pm to 2 pm
Contact	farhat.kaleem@umt.edu.pk ilyas.khan@umt.edu.pk

Chairman/Director signature				
Dean's signature	Date			

Learning Objective:

Upon Completion of the course, the students will be able to:

- 1. Understand analytical environment of signals and systems.
- 2. Appreciate few examples of physical systems.
- 3. Able to define various classes of signals and understand their relevance to analysis.
- 4. Able to perform time-shifting, flipping, and scaling of signals, in any combination, graphically and analytically, and on both discrete and continuous signals.
- Demonstrate mathematical and graphical representation and properties of impulse function, step function, sinusoids and complex sinusoid, rectangular pulse and Sinc functions.
- 6. Evaluate equivalent system of inter-connected systems.
- 7. Understanding of Impulse-response.
- 8. Be able to identify whether a system is linear, time-invariant, memoryless, causal, stable and invertible from a mathematical representation of the system.
- 9. Be able to determine system's properties (memory, causality, invertibility, stability) of LTI systems from a given impulse response.
- 10. Evaluate convolution-sum of two discrete expressions or graphs.
- 11. Evaluate convolution-integral of two continuous expressions or graphs.
- 12. Be able to evaluate impulse and step response from a given differential and difference equations.
- 13. Be able to evaluate discrete-time Fourier series of discrete periodic signal and plot line spectrum.
- 14. Be able to evaluate Fourier series of continuous periodic signal and plot line spectrum.
- 15. Be able to apply properties of Fourier series to evaluate Fourier coefficients.
- 16. Be able to evaluate Discrete-Time Fourier Transform (DTFT) and plot the resulting spectrum.
- 17. Be able to evaluate Fourier Transform (FT) and plot the resulting spectrum.
- 18. Be able to apply properties of Fourier transform and DTFT with the understanding of the basic differences.
- 19. Be able to evaluate FT and DTFT of periodic signals.
- 20. Be able to define and describe sampling operation in time and frequency-domain, mathematically and graphically, with a view to Nyquist sampling theorem.
- 21. Be able to determine whether a sampled signal will alias.
- 22. Be able to mathematically demonstrate the reconstruction of a sampled signal.

Learning Methodology:

Lecture, interactive, participative

Grade Evaluation Criteria

Following is the criteria for the distribution of marks to evaluate final grade in a semester.

Marks Evaluation	Marks in percentage	
Quizzes/Assignments	25	
Mid Term	25	
Attendance & Class Participation		
Term Project		
Presentations		
Final exam	50	
Total	100	

Recommended Text Books:

Recommended Book:

Signals & Systems by Simon Haykin and Barry Van Veen, 2nd Edition, John Wiley & Sons

Reference Books:

1) Signals & Systems by Alan V. Oppenheim and Alan S Willisky, 2nd Edition, Pearson Education Inc.

Calendar of Course contents to be covered during semester

Course code: EE315 **Course title:** Signals and Systems

Lecture	Course Contents	Reference Chapter(s)
1	Introduction	1.1-3
2	Introduction to Complex Numbers	
3	Classification of Signals; Basic Operations on Signals	1.4-5
4	Elementary Signals	1.6
5	Interconnection of Systems; Properties of Systems	1.7-8
6	Properties continued	1.8
7-8	The Convolution Sum and its evaluation	2.2-3
9-10	Convolution Integral and its evaluation	2.4-5
11	LTI System Properties and Impulse Response/Step Response	2.7-8
12	LTI Systems as Differential and Difference Equations	2.9
13	Complex Sinusoids and Frequency Response	3.2
14	Fourier Representation of Four Classes of Signals	3.3
	Midterm	
15-16	Discrete-Time Fourier Series	3.4
17-18	Continuous-Time Fourier Series	3.5
19-20	Discrete-Time Fourier Transform (DTFT)	3.6
21-22	Continuous-Time Fourier Transform	3.7
23-24	Properties of Fourier Representation	3.8-16
25-26	Fourier Transform of Periodic Signals; Sampling, aliasing	4.2-5
27-28	Introduction to Laplace transform	
29-30	Introduction to Z-transform	