<u>University of Management and Technology</u>

Course Outline

Course codeEE 208	Course titleElectronic Devices & Circuits

Program	BSEE
Credit Hours	3
Duration	One semester
Prerequisites	EE-111 Circuit Analysis
Resource Person	Jameel Ahmad, Muhammad Asim Butt, Waseem Iqbal
Counseling Timing	See office window
Contact	Jameel.ahmad@umt.edu.pk, asim.butt@umt.edu.pk and waseem.iqbal @umt.edu.pk

hairman/Director signature	
Dean's signature Date Date	

Learning Objective:

Upon Completion of the course, the students will be able to:-

- 1. Understand distinguishing characteristics of BJTs, MOSFETS ans CMOS
- 2. Understand basic electronic devices e.g., diode, transistor construction and characteristics
- 3. DC biasing of transistors
- 4. DC biasing of FETs
- 5. solve simple circuits using diodes, transistors, MOSFETS & CMOS
- 6. load line analysis of diode, transistors and MOSFETS
- 7. solving problems related to amplification using transistors and MOSFETS.
- 8. working of a transistor and MOSFET as a switch for digital circuits
- 9. Able to design electronic circuits to meet given specs

Learning Methodology:

Lecture, interactive, participative

Grade Evaluation Criteria

Following is the criteria for the distribution of marks to evaluate final grade in a semester.

Marks Evaluation	Marks in percentage
Quizzes and Assignments	20
Mid Term	30
Final exam	50
Total	100

Recommended Text Books:

Text book: Fundamentals of Microelectronics by Behzad Razavi, second edition

Reference Books:

1) Microelectronics Circuits by Sedra/Smith. seventh edition

Calendar of Course contents to be covered during semester

Week	Course Contents	Textbook (topics)
1	Introduction to electronic devices and circuits, basic physics of semiconductors	TB: 1.1-1.4 2.1-2.2
2	DIODE MODELS AND CIRCUITS Ideal Diode, pn Junction as a Diode, Large-Signal and Small-Signal Operation	TB: 3.1-3.4
3	APPLICATIONS OF DIODES Half-Wave and Full-Wave Rectifiers, Voltage Regulation, Limiting Circuits, Voltage Doublers, Diodes as Level Shifters and Switches	TB: 3.5.1 - 3.5.2
4	APPLICATIONS OF DIODES Limiting Circuits, Voltage Doublers, Diodes as Level Shifters and Switches	TB: 3.5.3 - 3.5.5
5	PHYSICS OF BIPOLAR TRANSISTORS Structure of Bipolar Transistor, Operation of Bipolar Transistor in Active Mode, Bipolar Transistor Models and Characteristics	TB: 4.2 - 4.4
6	PHYSICS OF BIPOLAR TRANSISTORS Operation of Bipolar Transistor in Saturation Mode, The PNP Transistor Structure and Operation	TB: 4.5-4.6
7	BIPOLAR AMPLIFIERS Input and Output Impedances, Biasing, DC and Small-Signal Analysis, Operating Point Analysis and Design.	TB: 5.1 - 5.2
8	Mid Term Examination	
9	BIPOLAR AMPLIFIERS Bipolar Amplifier Topologies, Common-Emitter Topology, Common-Base Topology, Emitter Follower	TB: 5.3

10	PHYSICS OF MOS TRANSISTORS Structure of MOSFET, Operation of MOSFET: Qualitative Analysis, Derivation of I-V Characteristics, Channel-Length Modulation	TB: 6.1 – 6.2.3
11	PHYSICS OF MOS TRANSISTORS Operation of MOSFET: MOS Transconductance, Velocity Saturation, Other Second-Order Effects, MOS Device Models	TB: 6.2.4 – 6.3
12	PHYSICS OF MOS TRANSISTORS PMOS Transistor, CMOS Technology, Comparison of Bipolar and MOS Devices	TB: 6.4 - 6.6
13	CMOS AMPLIFIERS General Considerations: MOS Amplifier Topologies, Biasing, Realization of Current Sources, Common-Source Stage, CS Core, CS Stage with Current-Source Load, CS Stage with Diode-Connected Load, CS Stage with Degeneration, CS Core with Biasing	TB: 7.1- 7.2
14	CMOS AMPLIFIERS Common-Gate Stage, CG Stage with Biasing, Source Follower, Source Follower Core, Source Follower with Biasing	TB: 7.3-7.5
15	OPERATIONAL AMPLIFIER AS A BLACK BOX General Considerations, Op-Amp-Based Circuits	TB: 8.1-8.2