

<u>Department of Electrical Engineering,</u> <u>School of Engineering,</u> <u>University of Management and Technology</u>

Course Outline

Course code.....EE 360...

Course title.....Control Systems...

Program	BSEE
Credit Hours	3
Duration	One semester
Prerequisites	EE315:Signals and Systems MA-230:Differential Equations
Resource Person (s)	Jameel Ahmad, M Ilyas Khan
Counseling Timing	Contact Respective Teacher in SEN building
Contacts	Jameel Ahmad Jameel.ahmad@umt.edu.pk (0333-558-3815) M Ilyas Khan Ilyas.khan@umt.edu.pk

Chairman/Director signature.....

Dean's signature.....

Date.....

Course Description

The course deals with the analysis and design of linear feedback control systems. Feedback systems are ubiquitous in daily life and appear in many disciplines including communications, industrial processes, aerospace systems, vehicle engine systems and elsewhere. Classical control methods of analysis and design are used for linear systems and provide intuitive procedures for feedback control based on systems structure. State Variable methods have been responsible for the high performance and stability of modern engineered systems including aerospace, robotic, and industrial processes with many inputs and many outputs (MIMO). Mathematical modeling of different electro-mechanical control systems through transfer function and state space models will be studied exhaustively. Transient and steady state analysis will be introduced. Root-locus analysis and design method will be studied for PI, PD, PID, and Lead-Lag controllers. Students will be able to analyze frequency response via Phase and Gain Margin of Control systems using Bode plots.

Course Learning Objectives:

Specific Course objectives are as follows:-

- 1. To provide students with basic background in Linear Feedback Control Systems analysis and design.
- 2. To lay the foundations of classical control design including Root locus, Frequency Response via Bode Plots, stability analysis.
- 3. To understand tools for system analysis including differential equations, transfer functions, and state variable methods.
- 4. To provide an introduction to basic analysis and design methods in state variable systems.
- 5. To train students in the use of the Control System Toolbox, Simulink®, the Symbolic Math Toolbox, and MATLAB®'s graphical user interface (GUI) tools for system design and simulation for the workplace.
- 6. The lab sections will give students an understanding of implementing these concepts on actual physical processes including DC motor Speed Control, Magnetic Levitation, Ball and Beam system, Inverted Pendulum, Servo mechanisms.

Course Learning Outcomes:

- 1. Acquire the mathematical tools needed to analyze feedback control systems by classical methods including Root locus, Bode, and Routh Stability Test.
- 2. Students will learn about stability of open-loop and closed-loop systems.
- 3. Understand the basic concepts of state variable analysis.
- 4. Ability to perform designs with various control tools using MATLAB computer simulation toolboxes.
- 5. Understand the implementation of feedback control systems methods on actual industrial processes and case studies.
- 6. Learn to work in teams and contribute as a member to a group project.

Learning Methodology:

Lecture, interactive, participative, Computer Simulations

Grade Evaluation Criteria

Following is the criteria for the distribution of marks to evaluate final grade in a semester.

Marks Evaluation	Marks in percentage
Quizzes and Assignments	25
Midterm Exam	25
Attendance & Class Participation	NA
Term Project	NA
Presentations	NA
Final exam	50
Total	100

Required Textbook:

1. **Control Systems Engineering** by Norman S. Nise, 6th /7th edition (2015) **Reference Books:**

Course code......EE360

- 2. Modern Control Engineering (5th Edition) by Katsuhiko Ogata (Sep 4, 2009)
- 3. Analog and Digital Control System Design: Transfer-Function, State-Space, and Algebraic Methods by Chi-Tsong Chen (Jan 1, 1993)
- 4. **Modern Control Systems** (12th Edition) by Richard C. Dorf and Robert H. Bishop (Jul 29, 2010)
- 5. **State Variables for Engineers** by Paul M. DeRusso, Rob J. Roy, Charles M. Close and Alan A. Desrochers (Dec 1997)
- 6. Control System Design: An Introduction to State-Space ,Bernard Friedland (Mar 24, 2005)

Calendar of Course contents to be covered during semester

Course title.....Control Systems

			Reference
Lec	ture (Lx)	Lecture Contents and Chapter Sections	Chapter(s)
After lectures L1&L2 student will be able to			
1.	Define a c	ontrol system and describe some applications (Section 1.1)	Chantar 1
2. Describe historical developments leading to modern day control theory (Section		<u>Learning</u>	
•	1.2)		Outcome
3.	Describe t	he basic features and configurations of control systems (Section 1.3)	
4.	Describe C	ontrol systems analysis and design objectives (Section 1.4)	
3.		1 Define control system	
	I 1 1	2 History of control systems	[1]Ch
		3 Basic features and configurations of control systems	Introduction
	1	4 Describe control systems analysis and design objectives	Introduction
	L2 1	5 Describe a control system's design process	
	1	.5 Computer Aided Design	
Afte	r lectures	L3-L6 student will be able to	
1.	Find the L	aplace transform of time functions and the inverse Laplace transform	
	(Sections 2	2.1–2.2)	
2.	Find the tr	ansfer function from a differential equation and solve the differential sing the transfer function (Section 2.3)	
3	Find the tr	ansfer function for linear, time-invariant electrical networks (Section	
5.	2 4)	ansier function for finear, time-invariant creet car networks (Section	<u>Chapter 2</u>
4.	Find the tr	ansfer function for linear, time-invariant translational mechanical	Learning outcome
	systems (S	Section 2.5)	
5.	Find the tr	ansfer function for linear, time-invariant electromechanical systems	
-	(Section 2	.8)	
6.	Linearize	a nonlinear system in order to find the transfer function (Sections 2.10–	
	2.11)		
	L3 2	.1-2.2 Laplace Transform and its inverse	1 Chapter 2

	 2.3 Transfer Function and differential equations 2.4 Electrical Network Transfer Function Quiz-1 will be conducted Homework-1 will be given + Case study-1 from Book 	Modeling in Frequency Domain
L4	2.5 Transfer function for translational mechanical system	
L5	2.8 Transfer function for electro-mechanical system	
L6	2.11 Transfer function for non-linear systems and its linearization Quiz-2 will be conducted based on HW1	
After lectu 1. Fin- time 2. Mo 3. Cor 4. Cor 5. Lin	tres L7-L10 student will be able to d a mathematical model, called a state-space representation, for a linear, e invariant system (Sections 3.1–3.3) del electrical and mechanical systems in state space (Section 3.4) nvert a transfer function to state space (Section 3.5) nvert a state-space representation to a transfer function (Section 3.6) earize a state-space representation (Section 3.7)	<u>Chapter-3</u> Learning Outcome
L7	3.1-3.3 State Space Model: A general Representation Homework-2 will be given + Case study-2 from Book	[1] Chanton 2
L8	3.4 Model Electrical and Mechanical System in Sate-Space	<u>Modeling in Time</u>
L9	3.5-3.6 Convert A transfer function into state space and vice versa, Phase variable form Quiz-3 will be conducted based on HW-1 and HW-2	domain
L10	3.7 Linearize state space representation Homework-3 will be given + Case study-3 from Book	
Afterlectu1.Use polecontrol s2.Describ3.Write the (Section)4.Find the 4.5)5.Find the underda6.Describ 7.7.Find the L11	res L11-L14 student will be able to es and zeros of transfer functions to determine the time response of a system (Sections 4.1–4.2) e quantitatively the transient response of first-order systems (Section 4.3) e general response of second-order systems given the pole location (4.4) e damping ratio and natural frequency of a second-order system (Section e settling time, peak time, percent overshoot, and rise time for an mped second-order system (Section 4.6) e the effects of nonlinearities on the system time response (Section 4.9) e time response from the state-space representation (Sections 4.10–4.11) $4.1-4.4$ Time response of first order and 2^{nd} order systems 4.5-4 6 Time Response of second and higher order systems with	<u>Chapter-4</u> Learning outcome
L12	4.5-4.6 Time Response of second and higher order systems with additional poles and zeroes	Time Response
L13	4.9 effects of nonlinearities on the system time response Quiz-4 will be conducted based on HW-3	
L14	4.10-4.11 the time response from the state-space representation	
L15-L16 Midterm		
After lecture 1. Rec	tres L17 student will be able to luce a block diagram of multiple subsystems to a single block representing transfer function from input to output (Sections 5.1–5.2)	<u>Chapter 5</u> Learning Outcome

L17	5.1-5.3 Reduction of Block Diagrams of multiple sub systems to a single control loop, signal flow graphs	[1] Chapter 5 Reduction of Multiple subsystems
After lectur 1. Mak (Sec 2. Mak zero 3. Use spac	res L18-L19 student will be able to the and interpret a basic Routh table to determine the stability of a system tions 6.1–6.2) the and interpret a Routh table where either the first element of a row is or an entire row is zero (Sections 6.3–6.4) a Routh table to determine the stability of a system represented in state the (Section 6.5)	<u>Chapter 6</u> Learning Outcome
L18	6.1-6.2 Routh Stability-1 Homework-4 will be given + Case study-4 from Book 6.3-6.5 Routh Stability-2	[1] Chapter <u>6</u> <mark>Stability</mark>
After lectur 1. Find 2. Spec 3. Desi spec L20 L21	res L20-L21 student will be able toI the steady-state error for a unity feedback system (Sections 7.1–7.2)cify a system's steady-state error performance (Section 7.3)ign the gain of a closed-loop system to meet a steady-state errorification (Section 7.4)7.1-7.2 Steady-State Error for Unity Feedback SystemsQuiz-5 will be conducted based on HW-47.3 Static Error Constants and System Type	[1] Chapter 7 Steady State Errors
 After lectures L22-L24 student will be able to Define a root locus (Sections 8.1–8.2) State the properties of a root locus (Section 8.3) Sketch a root locus (Section 8.4) Find the coordinates of points on the root locus and their associated gains (Sections 8.5–8.6) Use the root locus to design a parameter value to meet a transient response specification for systems of order 2 and higher (Sections 8.7–8.8) 		<u>Chapter 8</u> Learning Outcome
L22 L23 L24	 8.1-8.3 Root Locus Technique-1 Homework-5 will be given + Case study-5 from Book 8.4-8.6 Sketching Root Locus and associated gains 8.7-8.8 Parameter design for specific Transient Response Ouiz-6 will be conducted based on HW-5 	[1] Chapter 8 Root Locus Technique
After lectur 1. Use error 2. Use resp 3. Use stead 4. Real	res L25-L27 student will be able to the root locus to design cascade compensators to improve the steady-state r (Sections 9.1–9.2) the root locus to design cascade compensators to improve the transient onse (Section 9.3) the root locus to design cascade compensators to improve both the dy-state error and the transient response (Section 9.4) ize the designed compensators physically (Section 9.6) 9.1-9.2 Use the root locus to design cascade compensators to improve	<u>Chapter 9</u> Learning Outcome
L23	the steady-state error : PI control and Lag Compensator	<u>111 Chapter 9</u>

	Homework-6 will be given + Case study-6 from Book	Design Via Root	
L26	9.3 Use the root locus to design cascade compensators to improve the transient response : PD and Lead Compensation9.6 Realization of Compensators Physically-Op-Amp based Circuits	Locus	
L27	9.4 Improving steady-state and transient response: PID Control/lead- Lag compensator Quiz-7 will be conducted based on HW-6		
 After lectures L28-L30 student will be able to Define and plot the frequency response of a system (Section 10.1) Plot asymptotic approximations to the frequency response of a system (Section 10.2) Find stability, gain and phase margins using Bode plots (Sections 10.7) 		<u>Chapter 10</u> Learning Outcome	
L28	10.1 Plot Frequency Response of the system Homework-6 will be given + Case study-6 from Book	[1] Chapter 10 Frequency	
L29	10.2 Plot asymptotic approximations to the frequency response of a system: Bode Plots	<mark>Response</mark> Technique	
L30	10.7 Find stability, gain and phase margins using Bode plots Quiz-8 will be conducted based on HW-7		
L31-L32	Final Examination		
End of Semester			