

University of Management & Technology

School of Science & Technology

Department of Electrical Engineering

EE 327 Digital System Design						
Lecture Schedule	 Sec A: Mon & Wed, 17:20-18:40 Sec B: Tue & Thu, 13:20-14:40 Sec C: Tue & Thu, 08:00-09:20 Sec D: Mon & Wed, 08:00-09:20 Sec E: Mon & Wed, 08:00-09:20 	Semester	Fall 2012			
Pre-requisite	EE 219 Digital Logic Design EE224 Computer Organization And Architecture	Hours	3			
Instructor(s)	Dr. WaseemSec AAhmad MalikSec C, EM. Asim ButtSec B, D	Contact	<u>muhammad.waseem@umt.edu.pk</u> <u>ahmed.malik@umt.edu.pk</u> <u>asim.butt@umt.edu.pk</u>			
Office	C-3/14, Lab 5, SST faculty south wing Room 3	Office Hours	See Office Window			
Course Description	This course explains how to go about designing complex, high-speed digital systems. A hardware description language such as Verilog will be taught to model digital systems at Behavior and RTL level. Field programmable gate arrays (FPGA) will be used in the laboratory exercises as a vehicle to understand complete design-flow. Advanced methods of logic minimization and state-machine design will be studied. The working of complex logic and memory building blocks such as memory chips, arithmetic circuits, digital processors etc. is included. Memory technologies will also be discussed. A seminar is also included to introduce the students about latest trends in design technologies. The course contributes to <u>objectives</u> a, d, e and f of the HEC Electrical Engineering Curriculum.					
Expected Outcomes	 In accordance with HEC curriculum <u>outcomes</u> a, b, d, e, g, h & i, students at the end of the course should be able to To use computer-aided design tools for design of complex digital logic circuits To model, simulate, verify, and synthesize with hardware description languages To design and prototype with programmable logic 					
Textbook(s)	Recommended Text: Advanced Digital Design with the Verilog HDL by Michael D. Ciletti, Prentice Hall, 2003. Reference: "Digital Design", by M. Morris Mano, Michael D. Ciletti, 4th Edition (PEARSON, Prentice Hall) "Verilog HDL" by Samir Palnitkar, Pearson Education, Second edition, 2004					
Grading Policy	• Assignments: 5%					

 Quizzes: Midterm : Final: 	15% 20% 40%	
Final:Lab:	40% 20%	

Course Schedule

Lecture	Topics	Textbook (TB) / Reference (Ref) Readings
1	Introduction to digital systems and their design flow:	Ciletti - Chapter 1
	General introduction of digital world, importance, VLSI, Moore's	
	law, design steps, verification, synthesis, physical design, layout,	
	testing, fabrication technologies	
2-3	Verilog introductory lectures:	Samir Palnitkar, Online Verilog Quick Reference Guide
	Language fundamental concepts, Verilog syntax and	
	execution semantics, modules, data types, operators,	
	statements, functions, tasks: Illustration by examples.	
	Verilog modeling, Gate level, RTL, behavioral, test bench	
	design basics, simulation and synthesis semantics, VHDL	
	basics, Verilog & VHDL comparison, Illustration by	
	examples	
	Review of Combinational Logic Design and Modeling in Verilog	Ciletti - Chapter 2,
4-5	Arithmetic circuits: adder, subtractor (Verilog modeling)	Mano – Chapter 2
	Encoders, Decoders, Multiplexer, demultiplexer (Verilog	
	modeling)	
6	Logic Minimization techniques – K-Map method review,	Class Notes
	McCluskey method, examples	
	Glitches and Hazards	Ciletti - Chapter 2.5
	 Glitches and hazards introduction, Static hazards, 	
7-8	Mitigation of static hazards in 2 level circuits,	
	 Mitigation of static hazards in multi level circuits, Dynamic 	
	hazards, Mitigation of dynamic hazards	
9 – 10	Review of Sequential Logic Design	- Ciletti - Chapter 3.1, 3.2
	 Latches and Flip-Flops, Registers, Counters (Verilog 	- M. Mano - Chapter 5, 6 - Class Notes
	modeling of sequential logic)	
	 Timing diagrams, Sequential circuit analysis, Examples of 	
	Sequential circuits using Verilog	

	Moore and Mealy State Machines Design	- Ciletti - Chapter 3.4, 3,5,			
11– 13	- Introduction to finite state machines, graphical	3.6, 3.7 - Class Notes			
	representation, state tables, state charts				
	- Implementation, state encoding techniques, Real life				
	examples and FSM modeling				
	 Verilog modeling of state machines and applications 				
	Row matching and Implication charts	- Ciletti - Chapter 3.8,			
14-15	- Row matching technique for state minimization in FSM	- Class Notes			
	- Implication charts methods for state minimization in FSM				
	Mid Term Exam (8 th Week)				
4.5	Asynchronous Sequential Logic: Analysis of asynchronous circuits	M. Mano – Chapter 9.1-9.4			
16	, Circuits with latches, Design procedure of asynchronous circuits				
	Architecture for Arithmetic Processors	Ciletti - Chapter 10.1, 10.2,			
	 Functional units for addition and subtraction: Ripple carry adder, Carry look ahead adder 	10.3.1, 10.3.2, 10.3.3,			
17-21	- Functional units for multiplication: Combinational	10.3.6, 10.3.7, 10.3.8,			
	 multiplier, Sequential multiplier, Booth's algorithm Basics of Signed binary multiplication, Basics of 	10.3.9, 10.3.11.			
	multiplication of fractions, Basic design of ALU of the CPU.	10.4, 10.5			
22	Timing Analysis: Race conditions, clock skew, slew rate, setup	Ciletti - Chapter 11.1, 11.2,			
22	and hold, propagation delays, recovery time	11.3, 11.6			
23-24	Memory technologies: ROM, DRAM, SRAM, Flash memory	Ciletti - Chapter 8.1, 8.2			
25	Programmable Logic Devices: - PAL, PLA and CPLD	Ciletti - Chapter 8.1, 8.3, 8.4, 8.5, 8.6 M. Mano – Chapter 7			
26.27	Field Programmable Gate Array (FPGA): FPGA technologies,	Ciletti – Chapter 8.9, 8.10,			
26-27	architecture, role in the ASIC market	8.11, 8.12, 8.14, 8.15, 8.16 8.17			
	Seminar: State-of-the-art digital design technologies	Four presentations (15 min			
28	- Four topics (Electronic Design Automation, System-on-	each) to be delivered by 4			
	Chip (SoC), Network-on-Chip (NoC), Embedded systems)	groups of students			
29-30	Reserved for review				
Final Term Exam (Comprehensive)					