University of Management and Technology

School of Science (SSC)

Department of Physics

Course Code:	PH-307
Course Title:	Mathematical Methods of Physics I
Program:	BS Physics
	Course Outline (Fall Semester 2024)

Lecture	Sec. P	Pre-	Mechanics, Differential Equations,						
Schedule		requisite	Linear Algebra						
Course Instructor	Syed Nasrullah Ali Qazi	Contact	nasrullah.qazi@umt.edu.pk						
	This course presents the basic mathematical techniques and ideas with its important								
Course	applications commonly used to solve	physical syst	tems for various domains in Physics. The						
Descriptio	first part of the course series cove	ers vector ca	lculus and complex analysis with their						
n	implications in physics problems	for areas s	uch as Electromagnetism, Mechanics,						
Exported	After successfully completing this co	urse. the stud	ent will:						
Dutaamaa									
Outcomes	• be able to understand the impo	ortance of the	e mathematical equations and modeling;						
	• gain an understanding of the b	basic mathem	atical knowledge of physics of						
	electromagnetic interactions a	ind modeling,	electromagnetic inductions, short wave						
	apply the knowledge of mathe	applications matics in Phy	usics and vice versa:						
	 Be able to understand and dis 	cuss the ratio	nale behind the principles and governing						
	mathematical physics modeling.								
	• To develop the mathematical background of student in vectors, tensors, matrices								
	and some of their uses in the world of physics, to give basic understanding of group								
	theory and complex variables	used in physi	ICS.						
Toxt Book	1. Mathematical Physics by H	.K Daas Seve	enth Edition (1997)						
I ext DOOK	2. Advanced Engineering Mat	hematics by	Dennis G. Zill, Warren S. Wright - Fifth						
	Edition(2014)								
Reference	1. Mathematical Methods for P	hysicists (7 tl	n Edition) by G. B. Arfken, H. J. Weber						
Books	and F. E. Harris, Academic Pr	ress (2012)	entities has M. Detaining C. Day distant A.						
	2. A Guide to Mathematical Me	ethous for Ph	lysicists by M. Petrini, G. Pradisi and A.						
	3. Mathematical Methods in th	e Physical S	ciences by Mary L. Boas (3 rd Edition)						
	Wiley Press(2005)								
	4. Mathematical Methods for Ph	nysics and En	gineering by Ken Riley, Michael Hobson						
	and Stephen Bence(3rd Edition	n) Cambridge	e Press (2005)						
	5. Dennery, Philippe, and And	dré Krzywic	ki, Mathematics for physicists, Dover						
	6 Mathematical methods for pl	usics and en	gineering by K F Riley M P Hobson						
	and S. J. Bence (3rd Edition)	Cambrige (1)	999)						
	7. Mathematical Methods for I	Physicists: A	Concise Introduction by T. L. Chow,						
	Cambridge (2000)								
Assignmen	Presentations and projects will be	Ouizzes	Class activities will be performed in						
ts	assigned as an assignment.	~	the class related to lectures completed						

			in the class. One Major quiz will be announced well before time by the department.				
Mid Term Examinati on	A 60-minutes exam will cover all the material covered during the first half of the semester.	Final Examinati on	A 120-minutes exam will cover all t material covered during the semester				
Attendanc e Policy	Students missing more than 20% of the lectures will receive an "SA" grade in the course and will not be allowed to take final exam.						
Grading	Assign + Quizzes + Presentation/class activity+ attendance:10+10+5+5						
Policy	Mid Term Examination:		30				
	Final Examination:		40				

Learning Outcomes:

Course Learning Outcomes (CLOs)

The course is directed towards the description, analysis, investigate and applications of electromagnetic phenomena. Upon successful completion of the course, the student should be able to:

CLO	CLO Statement	PLO	Learni ng Doma in and Ievel	Blooms Taxonomy
1	Remember basic knowledge of mathematics (i.e., gradient, divergence, curl) on the mathematical equations of 1D, 2D and 3D Surfaces.	1	C1	Level 1
2	Understand Learn the theorems like divergence theorem, apply on physical problems like Gausses Law and divergence law to calculate integrals for sphere and circle.	2	C2	Level 2
3	Apply the basic time-independent and time-dependent Equation of motion for the charges in one-, two- and three-dimensional surfaces. (i.e., should be based on initial as well boundary value problems)	3	C3	Level 3

1. CLO – PLO MAPPING:

	Progr	Program Learning Outcomes (PLOs)										
CLOs	Scientific Knowledge	Problem Analysis	Conduct investigations of complex problems	Design / Development of Solutions	Science and Society	Environment and Sustainability	Ethics	Communication	Individual and Team Work	Lifelong Learning	Future Employability	Competency
	1	2	3	4	5	6	7	8	9	10	11	12
1	C1											
2		C2										
3			C3									

Department of Physics PH-307 Mathematical Methods of Physics I Lecture Plan (Fall 2024)

Week	TOPICS
1	Self-Introduction, Importance of mathematics in Physics, Laws and theories, Ladder between physics and mathematics, Some basic equations.
2	Vectors, Polar vectors, Axial Vectors, Addition of Vectors, Rectangular Resolution of Vectors, Unit Vector, Numerical 1 (finding angle b/w Vectors), Position Vector, Numerical 2 (Position Vector related), Ratio Formula, Product of Two Vectors, Scalar Product or Dot Product, Numerical 3 (Commutative property between two vectors), Geometrical Interpretation, Work done as scaler Product
3	Gradient, Divergence and Curl and Related numerical just an idea
4	Vector Product or cross product, Vector Product as a determinant, Area of Parallelogram, Moment of Force, Angular velocity, Scaler Triple product, Numerical of vector algebra
5	Vector Function, Differentiation of Vectors, Acceleration and velocity of the particle moving in curved path, Radial components of Vector, Tangential components of vector, Numerical Analysis of tangential acceleration vector, magnitude of Tangent vector, Some identical proofs
6	Gradient, Gradient of a function, One dimensional Function, two dimensional Function, Three dimensional function, Time dependent function, exponential functions, Divergence, Why divergence is important, Some equations or functions involving divergence, Numerical related to divergence, definition Curl, Momentum equation with divergence and curl term, Numerical related to above problem
7	The curl of a vector point function, numerical related to vector point function, Physical meaning of curl, Curl of the field associated with rotational properties of the field

	how?, Numerical which allow to find divergence and curl at the same time, The vector field is solenoidal How?, The vector field is irrotational How?, The vector field is rotational How?, Calculate the values of constants present in vector field, Scalar vector potential and related numerical
8	We will try to understand the vector integration in this week, Line integral, related problems to line integral, Mathematical notation for vector integrals, some important results coming from line integral (i.e., work done, Circulation effects), Open path integrations and its applications, Close integrals and its applications, Numerical to calculate work done, how to calculate the square boundary bounded by the line vectors? time variation in vector fields and work done by that
9	Greens Theorem Its applications, Greens Theorem Continuous functions with example (increasing and decreasing), Discontinuous Functions with examples (increasing and decreasing), Some important results to remember, why partial derivatives are important? in Greens Theorem, Some examples regarding Greens Theorem, Numerical
10	Stokes Theorem, difference between Greens Theorem and Stokes Theorem, Verification of Greens theorem, Conversion of line integrals to Surface integrals, Examples related to Greens Theorem and Stokes Theorem, Numerical
11	Functions of a complex variable, Cauchy-Riemann conditions
12	Multi-valued functions and branch cuts, singularities and zeroes of complex functions, complex integration, Cauchy's theorem, Cauchy's integral formula, Laurent
13	Projects
14	Presentations
15	Final

Mapping of CLOs to Direct Assessments

CLOs ♥	Quiz 1	Quiz 2	Quiz 3	Quiz 4	Quiz 5	Quiz 6	Quiz 7	Midterm Exam	Final Exam
1	✓							✓	\checkmark
2		\checkmark	\checkmark		\checkmark	\checkmark		✓	\checkmark
3				\checkmark			✓	✓	\checkmark

Faculty Signature

Date.....

Chairman/Director signature.....

Dean's signature.....

Date.....

Date.....