

University of Management & Technology School of Science Department of Life Sciences

BT-307 Molecular Biology							
Lecture Schedule	Tuesday 03:30-04:45 Friday 03:30-04:45	Semester	Spring 2021				
Pre-requisite		Credit Hours	4				
Instructor	Dr. Muhammad Sohail Afzal	Contact	sohail.afzal@umt.edu.pk				
Office	38-37	Office Hours	See office window				
Course Description	Molecular biology deals with nucleic acids and proteins and how these molecules interact within the cell to promote proper growth, division, and development. It is a large and ever- changing discipline. This course will emphasize the molecular mechanisms of DNA replication, repair, transcription, splicing, protein synthesis, and gene regulation in different organisms. We will study the techniques and experiments used to discern these mechanisms, often referring to the original scientific literature.						
Expected Outcomes	 often referring to the original scientific liferature. By the end of this semester, we would like you to: Understand how molecular machines are constructed and regulated so that they can accurately copy, repair, and interpret genomic information. Explain and give examples of how ionic, hydrophobic, and hydrogen bonding interactions determine the structure of nucleic acids and proteins and modulate the specificity of binding between them. Compare and contrast the mechanisms of bacterial and eukaryotic DNA replication, DNA repair, transcription, and translation. Explain how DNA topology and chromatin structure affects the processes of DNA replication, repair, and transcription. Describe mechanisms by which DNA can be damaged and describe the molecular mechanisms by which protein complexes repair different forms of DNA damage. Provide examples of how homologous recombination is used to ensure genome stability and promote genetic diversity. Describe how pre-mRNA splicing occurs and explain how alternative splicing and backsplicing can generate protein diversity. Explain the molecular mechanisms behind different modes of gene regulation in bacteria and eukaryotes at both pre- and post-transcriptional levels. Interpret and critique data from primary research articles. 						
Textbook(s)	 Molecular biology / Robert F. Weaver. 5th ed. p. cm. ISBN 978–0–07–352532–7. The McGraw-Hill Companies, Inc., 1221 Avenue of the Americas, New York, NY 10020. 2012 Molecular Biology of the Genes/ Watson. COLD SPRING HARBOR LABORATORY PRESS Cold Spring Harbor, New York.2014 						

Grading Policy	Quizzes & Assignments:Presentation	20% 05%
	Midterm:Final Exam:	30% 45%

Course Schedule

Lecture #	TOPICS	Readings
Week 1	A brief History: 1.1Transmission Genetics 1.2 Molecular Genetics	Molecular Biology (Robert F. Weaver) Chapter 1
	 1.3 The Three Domains of Life The Molecular Nature of Genes 2.1 The Nature of Genetic Material 2.2 DNA Structure 2.3 Genes Made of RNA 2.4 Physical Chemistry of Nucleic Acids 	Molecular Biology (Robert F. Weaver) Chapter 2
Week 2	An Introduction to Gene Function 3.1 Storing Information 3.2 Replication 3.3 Mutations	Molecular Biology (Robert F. Weaver) Chapter 3
Week 3	The Mechanism of Transcription in Bacteria6.1 RNA Polymerase Structure6.2 Promoters6.3 Transcription Initiation6.4 Elongation6.5 Termination of Transcription	Molecular Biology (Robert F. Weaver) Chapter 6
Week 4	Operons: Fine Control of Bacterial Transcription7.1 The lac Operon7.2 The ara Operon7.3 The trp Operon7.4 Riboswitches	Molecular Biology (Robert F. Weaver) Chapter 7
Week 5	Eukaryotic RNA Polymerases and Their Promoters10.1 Multiple Forms of Eukaryotic RNA Polymerase10.2 Promoters10.3 Enhancers and Silencers	Molecular Biology (Robert F. Weaver) Chapter 10
Week 6	Chromatin Structure and Its Effects on Transcription 13.1 Chromatin Structure 13.2 Chromatin Structure and Gene Activity	Molecular Biology (Robert F. Weaver) Chapter 13
Week 7	RNA Processing I: Splicing 14.1 Genes in Pieces 14.2 The Mechanism of Splicing of Nuclear mRNA Precursors 14.3 Self-Splicing RNAs	Molecular Biology (Robert F. Weaver) Chapter 14
Week 8	RNA Processing II: Capping and Polyadenylation 15.1 Capping 15.2 Polyadenylation 15.3 Coordination of mRNA Processing Events	Molecular Biology (Robert F. Weaver) Chapter 15
Week 9	Mid Term Exam The Mechanism of Translation I:Initiation 17.1 Initiation of Translation in Bacteria 17.2 Initiation in Eukaryotes 17.3 Control of Initiation	Molecular Biology (Robert F. Weaver) Chapter 17

	The Mechanism of Translation II:Elongation and Termination	Molecular Biology
	18.1 The Direction of Polypeptide Synthesis and of mRNA Translation	(Robert F. Weaver)
Week 10	18.2 The Genetic Code	Chapter 18
	18.3 The Elongation Cycle	
	18.4 Termination	
	Ribosomes and Transfer RNA	Molecular Biology
Week 11	19.1 Ribosomes	(Robert F. Weaver)
	19.2 Transfer RNA	Chapter 19
Week 12	DNA Replication, Damage, and Repair	Molecular Biology
	20.1 General Features of DNA Replication	(Robert F. Weaver)
WEEK 12	20.2 Enzymology of DNA Replication	Chapter 20
	20.3 DNA Damage and Repair	
Week 13	DNA Replication II: Detailed Mechanism	Molecular Biology
	21.1 Initiation	(Robert F. Weaver)
	21.2 Elongation	Chapter 21
	21.3 Termination	
Week 14	Homologous Recombination	Molecular Biology
	22.1 The RecBCD Pathway for Homologous Recombination	(Robert F. Weaver)
	22.2 Experimental Support for the RecBCD Pathway	Chapter 22
	22.3 Meiotic Recombination	
	22.4 Gene Conversion	
Week 15	Transposition	Molecular Biology
	23.1 Bacterial Transposons	(Robert F. Weaver)
	23.2 Eukaryotic Transposons	Chapter 23
	23.3 Rearrangement of Immunoglobulin Genes	
	23.4 Retrotransposons	