

University of Management and Technology

School of Science and Technology

Department of Physics

Course Code:	PH-311			
Course Title:	Classical Mechanics			
Program:	BS (PHY&MATH)			
Course Outline (Fall Semester 2022)				

Schedule	8:00 a.m – 9:15 a.m (Tuesday & Friday)	Pre- requisite	PH-101 Mechanics		
Course Coordinator	Syed Nasrullah Ali Qazi	Contact	nasrullah.qazi@umt.edu.pk		
Course Description	Newton Second Law of Motion in Cartesian and Polar Coordinates, Momentum Conservation, Rockets, Angular Momentum for Single & Several Particles, Conservation of Energy, Central Forces, Harmonic Oscillator, Two Dimensional Harmonic Oscillator, Damped Oscillation & Resonance, Euler-Lagrange equations, Lagrange's equations for unconstrained & constrained motion, , Two Body Central Forces Problems, Kepler Orbits, Hamiltonian's Equations for One and Several Dimensions, Mechanics in Non-inertial Frames				
Expected Outcomes	Participants will learn calculus based Classical Mechanics approach. They will also be ready for Quantum Mechanics, Statistical Mechanics and Relativity courses.				
Text Book	Classical Mechanics by John R Taylor 1 st Edition				
Reference Book:	Classical Dynamics of Particles and System by Marion Thornton, 5th Edition An Introduction to Mechanics by Daniel Kleppner & Robert Kolenkow, 2 nd Edition				
Assignments	ItsProblems will be assigned at regular intervals as an assignment.All quizzes will be announced well before time. No make-ups will be offered for missed quizzes				
Mid Term Examination	A 60-minutes exam will cover all the material covered during the first half of the semester.	Final Examination	A 120-minutes exam will cover all the material covered during the semester.		
Attendance Policy	Students missing more than 20% of the lectures will receive an "SA" grade in the course and will not be allowed to take final exam.				

Department of Physics Classical Mechanics (PH311)

Lecture Plan (Fall 2022)

Week	Lecture	TOPICS	СН	Sections
	#			
1.	1	Space, Time, Mass, Force	01	1.1-1.3
	2	Newton's Laws of Motion: Inertial Frame &	01	1.4-1.5
		Newton's Third Law		
2.	1	Newton's Second Law in Cartesian & Polar	01	1.6-1.7
		Coordinates		
	2	Conservation of Momentum & Rockets	03	3.1-3.2
3.	1	Center of Mass, Angular Momentum for single	03	3.3-3.4
		particle		
	2	Angular Momentum for Several Particles	03	3.5
4.	1	Kinetic Energy and Work, Potential Energy and	04	4.1-4.2
	_	Conservative Forces		
	2	Potential Energy and Conservative Forces, Force as	04	4.2-4.3
		Gradient of Potential Energy,	<u> </u>	
5.	1	Second Condition F be Conservative, Central	04	4.4,4.8
		Forces		
	2	Central Forces(cont),Interaction of Two Particles	04	4.8-4.9
6.	1	Hooke's Law & Simple Harmonic Motion	05	5.1-5.2
	2	Two Dimensional Oscillators, Damped Oscillations	05	5.3-5.4
7.	1	Damped Oscillations(cont), Driven Damped	05	5.4-5.5
		Oscillation	o -	
	2	Driven Damped Oscillation(cont), Resonance	05	5.5-5.6
8.	1	Two Examples, Euler Lagrange Equation	06	6.1-6.2
	2	Applications of Euler Lagrange Equations, More	06	6.3-6.4
0	1	than I wo variables	07	7170
9.	1	Lagrange's Equations for Unconstrained &	07	1.1-1.2
	2	Constrained Systems in General Examples of	07	7375
	2	Lagranges's Equations	07	1.5,1.5
10	1	Examples of Lagranges's Equations (cont)	07	7.5
10.	2	Examples of Lagrange's Equations	07	1.5
	-	(cont) Generalized Momenta and Ignorable	07	7.5-7.6
		Coordinates	0.	110 110
11.	1	The Problem. CM and Relative Coordinates:	08	8.1-8.2
		Reduced Mass		
	2	Equations of Motion, The Equivalent One-	08	8.3-8.4
		Dimensional Problem		
12.	1	The Equivalent One-Dimensional Problem(cont),	08	8.4-8.5
		Equations of Orbit		
	2	Kepler Orbits, Unbounded Kepler Orbits	08	8.6-8.7

13.	1	The Basic Variables, Hamilton's Equations for	13	13.1-13.2
		One-Dimensional Systems		
	2	Hamilton's Equations in Several Dimensions	13	13.3
14.	1	Ignorable Coordinates, Lagrange's Equations vs.	13	13.4-13.5
		Hamilton's Equations		
	2	Acceleration Without Rotation, Tides	9	9.1-9.2
15.	1	The Angular Velocity Vector, Time Derivatives in a	9	9.3-9.4
		Rotating Frame		
	2	Newton's Second Law in a Rotating Frame	9	9.5
16.	1	Revision week		
	2	Revision week		