University of Management and Technology

 \sim

School of Science (SSC)

Department of Physics

Course Code:	PH-309
Course Title:	Computational Physics
Program:	BS (PH)
	Course Outline (Spring 2019)

200

Lecture	Tuesday-Wednesday	Pre-requisite	Introduction to computing, Calculus, Mechanics		
Schedule	(02:00 – 03:15 PM)	-			
Course Instructor	Mr. H. Arslan Hashim	Contact	arslan.hashim@umt.edu.pk		
Course Description	Julia Programming: Algorithms, Basic math with Julia and complex numbers, Arrays and matrix operations, Strings, Functions, Control flows, IO and plotting. Recipe of a simulation in Julia, GIF and Animation construction. Errors in numerical procedure. Roots of equation: Bisection, Regula-Falsi, Fixed-Point iteration, newton and secant method, iterative method. Numerical methods for matrices: Linear equation system, Eigen-value problem, Gauss-Elimination, Gauss-Jordan algorithms, special matrices and Iterative method. Interpolation and Curve fitting: Interpolation, Divided difference, Least-squares approximation. The Milikan experiment. Numerical Calculus: Numerical differentiation, Numerical Integration. Ordinary differential equations: Initial-value problems, the Euler and Picard methods. A First Numerical Problem: Radio decay, Programming guidelines. Realistic Projectile Motion: Bicycle Racing, Projectile motion, Throwing a Baseball: The effect of spin, Golf. Oscillatory Motion and Chaos: SHO, Physical Pendulum, Chaos in the Driven Nonlinear Pendulum and Lorenz model. The Solar System: Two-body problem: Earth and Sun, Three-body problem: Earth, Jupiter and Sun.				
Expected	After successfully completing this course the student will:				
Outcomes	 be familiar with the basic Numerical techniques Simulation methods with Examples Ability to use these tools to model the problems in physics and other branches of science. 				
Text Book	S. Nagar, "Beginning Julia Programming: For Engineers and Scientists", Apress, 2017. *Curtis F. Gerald, "Applied Numerical Analysis, 7 th Ed. Pearson, 2004. **Nicholas J. Giordano, "Computational Physics", 2 nd Ed. Pearson, 2006.				
Reference Books	Brain Bradie, A Friendly Introduction to Numerical Analysis, Pearson, 2001. T. Pang, "An introduction to Computational Physics", Cambridge University Press, 2008.				
Assignments	Problems will be assigned at regular intervals an assignment.	Quizzes	All quizzes will be announced well before time. No make-ups will be offered for missed quizzes.		
Mid Term Examination	A 60-minutes exam will cover all the material covered during the first half of the semester.	Final Examination	A 120-minutes exam will cover all the material covered during the semester.		
Attendance Policy	Students missing more than 20% of the allowed to take final exam.	e lectures will receiv	ve an "SA" grade in the course and will not be		

Department of Physics Computational Physics (PH-309)

Lecture Plan (Spring 2019)

Week	TOPICS	СН
1	Julia-I: Basic math with Julia and Complex Numbers, Arrays and matrix operations	3-8
2	Julia-II: Strings, Functions, Control flow, IO and plotting	9-13
3	Error Analysis:	*0
	Root Finding method: Bisection method	*1
4	Newton, Secant method	*1
	Regula-Falsi, Fixed-Point method	*1
5	Numerical methods for matrices: Vectors and Matrices, Linear equation system,	*2
	Eigen-value problem, Gauss-Elimination method algorithm	*2
6	Gauss-Jordan algorithm, Special matrices	*2
	Inverse of a matrix, Iterative method.	*2
7	Program I: Simple algorithms (sum of series etc.)	*3
	Interpolation and Curve Fitting: Interpolating polynomial, Divided difference,	*3
8	Least-Square polynomial	*3
	Numerical Calculus: Numerical differentiation	°3
9	Numerical Integration A First Numerical Problem: Radio Active Decay, Programming Guidelines	**1
10	Simulation in Julia I	
	Realistic Projectile Motion: Bicycle racing,	**2
11	The effect of Air resistance.	**2
	Projectile motion with and without Air drag	
12	Simulation in Julia II	
	Oscillatory motion and chaos: SHO, Simple Pendulum, Damped	**3
13	Programming II	
	Driven and Physical Pendulum	**3
14	The Lorenz Model	**3
	The Solar System: Two body problem	**4
15	The Solar System: Three body problem	**4