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Abstract  

A third order parallel algorithm is proposed in this article to solve one dimensional 

non-homogenous heat equation with integral boundary conditions. For this 

purpose, we approximate the space derivative by third order finite difference 

approximation. This parallel splitting technique is combined with Simpson’s 1/3 

rule to tackle the nonlocal part of this problem. The algorithm developed here is 

tested on two model problems. We conclude that our method provides better 

accuracy due to the availability of real arithmetic.  

Keywords: parabolic partial differential equation, non-local boundary conditions, 

finite difference scheme, integral boundary condition. 

1. Introduction 

Partial differential equations (PDEs) with initial/boundary conditions (IBC) emerge 

from the mathematical models of real world problems. The PDEs often appear as 

mathematical equations relating various quantities and their derivatives, e.g., the 

movement of a particle in a straight line, the movement of a rocket, heat transition, 

vibration of a molecule and change in the molecular composition of a substance 

etc. Each one of these problems is represented by an elliptic, hyperbolic or parabolic 

partial differential equation (PPDE) and could be homogenous, in one, two or three 

dimensions with non-local boundary conditions (NLBC) along with initial 

conditions existing in the prose. In the family of PDEs, one of the most important 

class is PPDEs with NLBC. This class has been studied by different authors. In real 

life problems, parabolic equations with integral boundary conditions have a number 

of applications and sometimes we require only their numerical solutions. Thus 

PPDEs with NLBC have a considerable impact in fields like electrochemistry, 

biological and medical sciences and population dynamics [1]. The study of PPDEs 

with IBC is a well-motivated problem. Whenever it is difficult to develop a 

mathematical model which contains PPDEs, then nonlocal conditions are widely 

used in the development of such models pertaining to different physical phenomena 

[2]. The integral IBCs are the generalized form of discrete but regular IBCs. More 

specifically, when the boundaries are inaccessible then nonlocal conditions arise 
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during modeling. These partial differential equations are solved by using explicit 

and Nikolson finite difference (FD) scheme by various authors. Richardson [3] 

developed the FD technique to solve PDEs. Hartree and Womersley [4] proposed 

the solution of a PDE with some boundary conditions (BC) using FD 

approximation. The FD techniques are made by using Taylor expansion. Cannon 

[5] and Batten [6] independently discuss the development of nonlocal BC PPDEs. 

Kamynin [7] and Ionkin [8] investigated PPDEs with nonlocal BC for their 

numerical treatment. Such conditions appear in the modeling of plasma physics, 

thermal elasticity, heat transmission theory etc [9, 10]. This is the reason PPDEs 

with NLBC have gained a particular significance in the past and also in the present 

era. In order to tackle integral conditions which appeared in PDEs many techniques 

have been proposed in literature and some of these include finite element method, 

boundary element procedure, spectral schemes, Adomian decomposition approach 

and the semi-discretization technique [11, 12, 13, 14]. Dehghan [15] proposed 

three-level explicit finite difference method for the solution of wave 2 equation that 

merges integral and Neumann condition. Ang [16] developed a numerical 

technique for solving wave equation with NLBC whose basic assumption is an 

integro-differential equation and localized interpolating functions. Ramezani and 

his coworkers [17] introduced another numerical technique by combining FD and 

the spectral method to obtain numerical solutions of hyperbolic equations subject 

to NLBC. Bouziani and Benourar [18] studied a mixed PDE which more likely 

belongs to the class of hyperbolic equations with NLBC in terms of its numerical 

solution. Cannon and Lin [19, 20] provided a theoretical approach for the solution 

of PPDEs with NLBC. Dehgan utilized FD schemes [21, 22] and changed Tau 

method [23] for the solution of a related problem. Now we present the model 

problem described here. The one dimensional non homogeneous heat equation is 

given by 
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where ζ(x, t),F(x),
1
(t), 

2
(t),  (x) are known and T is a given constant. 

Different examples of related problems of parabolic equations have been taken into 

account by many authors [24, 25, 26]. Taj et al. [27] proposed the numerical 

technique for the solution of PPDEs by utilizing FD scheme and Pade 

approximation. Rehman et al. [28] proposed the solution of PPDEs with NLBC by 

combining parallel method with Simpson’s 1/3 rule. Following a similar approach, 

we will utilize Simpson’s 1/3 rule for NLBC by combining it with parallel splitting 

algorithm to obtain a system of z linear ordinary differential equations. The Pade’s 

approximation will be used to approximate matrix exponential function [27]. 

2. Non Local Boundary Conditions Treatment 

Let us take a positive odd integer z ≥ 9 and split spatial range [0, 1] into 

further z + 1 intervals of length h provided that (z + 1)h = X. Let us also split the 

open ended variable of time t into subintervals of length l which results into a 

rectangular mesh having coordinates (xE, zn) = (mh, nl)(m = 0, 1, 2, ..., z, z + 1) and 

(n = 0, 1, 2, 3, ...), provided a region R = [0 < x < 1] × [t > 0] of mesh points and its 

boundary ∂R involving lines x = 0, x = 1 and t = 0. Consider third order FD scheme 

given by 

 
2 4 6

2 5

1 1 2 32 6

( , ) 1 ( , )
11 20 6 4 ( ),    

12 90

          as h 0, j=1,2,...,z 2                                                (5)

j j j j j

u x t h u x t
h u u u u u O h

x x
   

 
      

 

 

 

By applying Eq. (5) in equation Eq. (1), we get a compact form as follows 

 
2

1 1 2 32 2

1
11 20 6 4         (6)

12

j

j j j j j j

d u
u u u u u

dx h
          

This system of ordinary differential equations is valid only for the mesh 

points (x, t) = (xm, tn) with m = 1, 2...z − 2. Hence we need to develop special FD 

approximations for remaining mesh points in order to get the same accuracy. So, 

for m = z−1, z the third order FD schemes with the same accuracy are given by 

 

 

and 

 
2 4 6

2 5

4 3 2 1 12 6

( , ) 1 ( , )
2 11 24 14 10 9 ( ),    as h 0       (8)

12 90
j j j j j j

u x t h u x t
h u u u u u u O h

x x
    

 
        

 

By applying Eqs. (6) and (7) in equation Eq. (1), we obtain two differential 

equations 

 
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 
2

1
3 2 1 1 2 12 2

1
6 26 40 21 2                (9)

12

z
j j j j j j z

d u
u u u u u u

dx h


             

and 

 
2

2

4 3 2 1 1 ,2

1
2 11 24 14 10 9 (10)

12

z
j j j j j j z

d u
h u u u u u u

dx
            

At any time level t = tn, we get a system of z linear ordinary differential 

equations with z+2 unknowns functions U0, U1, .....Uz+1 which emerge by applying 

FD approximations to our model problem. The NLBC in Eqs. (4) and Eq. (4) are 

tackled with the help of Simpson’s 1/3 rule in the following way [28], 

1 1
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 
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In the next few lines we will elaborate the development of system of 

ordinary liner differential equations for z = 11. Putting z=1,2,3,...,9 in Eq. (6) 

respectively, we get 

 21
0 1 2 3 4 12

1
11 (20 12 ) 6 4                (13)

12

du
u h u u u u

dt h
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 29
8 9 10 11 12 92

1
11 (20 12 ) 6 4                (21)

12

du
u h u u u u

dt h
        

and putting z = 10 in Eq. (6) 

 210
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1
6 26 (40 12 ) 21 2                (22)

12

du
u u u h u u u

dt h
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similarly putting z = 11 in Eq. (7) 

 211
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In this way, we can generalize the algorithm and the system of equation can 

be written in matrix-vector form as 

( )
( ) ( ),       t > 0                 (24)

dU t
AU t v t

dt
   

and the initial condition will transform as 

U(0)   =   G                                                     (25)  

Here 1 2( ) [ ( ), ( ),......, ( )]T

NU t u t u t u t , 1 2[g(x ),g(x ),......,g(x )]T

NX  , where 

T denotes transpose and coefficient matrix will transform as 
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The quantities in the matrix are given by 

𝜉 = −20 − 12ℎ2 

Where 
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' ' ' ' '
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Here  

1 2 3 0 4,  ,   and ,   also ( )
3 3 3 3

z i

h h h h
c c c c b b ih            

The column matrix contains factors from the functions 1 2( , ),  ( )  ( )x t t and t   

and is given as the  

1 2 2
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9 2
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2 2 4 1
1

1 4 2 3

( ) (t)C t C
l

C C C C
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
 

and 

3 2 1 1
2

1 4 2 3

( ) (t)C t C
l

C C C C

 



 

The solution of system (15) with (2) is given by [27] 

0
( ) exp( ) (0) exp[( ) ] ( )                           (27)

t l

U t lA U t l s A v s ds


     

which satisfies the repeat connection 

0
( ) exp(l ) ( ) exp[( ) ] ( )      t=0, , 2 ,....                           (28)

t l

U t l A U t t l s A v s ds


    
 

To surmise the lattice exponential in (2), we utilize the normal approximation for 

genuine scalar (θ) which is of the shape 

2

0 1 2
3 2 3

0 1 2 3

                           (29)
b b b
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and 
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( 1) , 0,1,2,3,4 (31)
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k

i

a
b K

K i

  


  

Choosing the estimations of parameters a1, a2, a3 as  
91

20
 , 

481

120
 and 

1 

100
  so that 

the strategy utilizes only real arithmetic when p and q are factorized into straight 

components. The fundamental term showing up in condition (2) is approximated as 

1 1 2 2 3 3exp[( ) ] ( ) v(s )+ v(s ) v(s )                                    (32)
t l

t
t l r A v s ds w w w



     

1 2 3 1 2 3 s s s  and W ,W  and W  .where are matrices   We have [27] 

1 1exp[( ) ] s  = M , k = 1,2,3,                                   (33)
t l

k k

j j k
t

t l s A s ds W


     

With 

1 1 1

1M { exp( ) (t+l) I + ( 1) M }, 1,2,3                                  (34)k k

k kA t lA k k  

   
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Taking 
1 2 3, ,

2

t
s t s t s t l     . Using lA   in (30) and taking lA P

e
Q

  we 

have [27] 

2 2 3 3 1

1 2 3( ) (35)P I a lA a l A a l A      

2 2

1 2 (36)Q I b lA b l A    

1 1 2(4 9 12 ) (37)
6

l
W I a a lAP     
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  6 1 23

1

1
1 1 3 6
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j j
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




    
 
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 


 

where 1,2,3j   

   2

9 1 2 1 23
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1 3 9 12 1 3 6

1

j j
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p a a a a r
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




      
 
 

 
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Hence eq. (2) becomes 

       

     

     
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1
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1
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1
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A p U t p v t p v t p v t l
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A p U t p v t p v t p v t l







   
         

   

   
        

   

   
        

   

 

Where , 1,2,3.i

i

l
A I A i

r
    

Hence 

 
3

1i

U t l yit


   

Where , ( 1,2,3)yi i   are the solutions of the systems? 
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3.  Applications 

Here, we will apply the method develop in the above section to two model 

problems already found in literature. 

Example 1 

Assume the heat equation 

 
2

2

2
0,1 , (380 )2 , ,

u
u t t x t Tx

t

u

x

 
      

 
 

with initial condition 

 0,1 ,(0, ) , 0 , (39)u t x t Tx    

 and the integral BCs 

1
2

0

1
( , ) , 0 (40)

2
x t dx t t Tu      

1
2

0

1 1
( , ) , 0 (41)

3 2
xu x t dx t t T     

Table 1. Error table for example 1 with l=0.00001 

l=10-5 Exact  

Solution 

Approximate 

Solution      

Relative 

Error 

  N=7       1.124980   1.124991   9.6736×10-6 

  N=9        1.099980   1.099906   9.6751×10-6 

  N=11       1.083313   1.083324   9.6775×10-6 

  N=13       1.071409   1.071419   9.6287×10-6 

  N=15       1.062480   1.062492   9.5876×10-6 

 

We can make sure that the exact solution to this problem is   2,u x t x t   [29]. 

The numerical solution of the problem is obtained by the method described in the 

above sections for different values of ℓ= 0.00001, 0.0000001 and z = 7,9,11, 13, 

15. The relative error and absolute error are given in Table 1 and Table 2. The 

results obtained here are very precise which shows that this method is very accurate. 

Example 2 

Assume the heat equation 
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   
2

2
0,1 , (42)10 2 , 0 ,tu

u x e t T
t t

u
x

x

 
     

  
  

with initial condition 

 0,( 10, ,) 5 , 0 , (43)u t x tx T     

 and the integral BCs 

1

0

9
( , ) , 0 (44)

2

tx t dx e tu T     

1

0

13
( , ) , 0 (45)

6

txu x t dx e t T    

The exact solution for the issue is ( , ) (5 ) tu u t x e   [29]. The numerical 

solution of the problem is obtained by the method described in the above sections 

for different values of l = 0.00001, 0.0000001 and z = 7, 9, 11, 13, 15. The relative 

error and absolute error are given in Table 3 and Table 4. The results obtained here 

are very precise which shows that this method is very accurate. 

Table 2. Error table for example 1 with l=0.0000001 

 

Table 3. Error table for example 2 with l=0.00001 

l=10-5 Exact  

Solution 

Approximate 

Solution      

Relative 

Error 

  N=7       12.23215   12.23222   6.2741×10-6 

  N=9        12.23215    12.23223   6.3084×10-6 

  N=11       12.23215   12.23222   6.3283×10-6 

  N=13       12.23215   12.23222   6.3376×10-6 

  N=15       12.23215   12.23222   6.3432×10-6 

 

l=10-7 Exact solution Approximate 

Solution 

Relative Error       

 N=7 1.124999 1.125007 6.5984×10-6 

 N=9 1.099999 1.100009 8.2648×10-6 

N=11 1.083333 1.083344 9.6225×10-6 

N=13 1.071428 1.071439 1.0778×10-6 

N=15 1.062499 1.062512 1.1567×10-6 
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Table 4. Error table for example 2 with l=0.0000001  

l=10-7 Exact  

Solution 

Approximate 

Solution      

Relative 

Error 

  N=7       11.21291 11.21297 5.6001×10-6 

  N=9        11.14495 11.14503 6.9319×10-6 

  N=11       11.09965 11.09974 7.9881 ×10-6 

  N=13       11.06729 11.06739 8.9277×10-6 

  N=15       11.043018 11.043012 9.5369×10-6 

4. Conclusion and Discussion  

In this work, we have developed a new method for solving 

nonhomogeneous PPDEs with NLBC. A third order FD scheme is deployed to heat 

equation to get numerical approximations at grid points. Simpson’s 1/3 rule is used 

to tackle integral boundary conditions which help in the construction of a system z; 

ordinary differential equation with Z variables. The main role of Simpson’s 1/3 rule 

is the elimination of two additional variables which arise due to NLBC. The 

developed method is applied to two test problems found in literature and the 

numerical results obtained here are highly accurate due to the use of real arithmetic 

only. This technique can be easily coded in serial or parallel computing 

environment. 
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