
Optimization of Complex Geometry Using Tenth Order Partial Differential 

Equation 

 

 

20 

 

Optimization of Complex Geometry Using Tenth Order Partial Differential 

Equation 

Syed Khawar Nadeem Kirmani* and Raja Noshad Jamil 

School of Science, Department of Mathematics, 

University of Management and Technology, Lahore, Pakistan 

*khawar.kirmani@umt.edu.pk 

Abstract 

This paper presents an efficient and intuitive technique of shape parameterization 

for design optimization using a partial differential equation (PDE) of order ten. It 

shows how the choice of two introduced parameters can enable one to parameterize 

complex geometries. With the use of PDE based formulation, it is shown in this 

paper how the shape can be defined and manipulated on the basis of 

parameterization and the boundary value approaches by which complex shapes can 

be created. Further the boundary conditions which are used in it are a boundary 

and an intermediate curves for defining the shape. This technique allows complex 

shapes to be parameterized intuitively using a very small set of design parameters. 

Hence, Practical design optimization of problems becomes more achievable by 

applying PDE based approach of shape parameterization by incorporating 

standard numerical optimization techniques [1,2]. 

Keywords: PDE surfaces, smoothness, continuity, ten boundary curves 

1. Introduction 

Parameterizing the shape of objects is one of the essential factors in practical design 

optimization. Embellishing a general explanation for objects, in which values of 

design parameters determine their shape is rudimentary in parameterization [3,4]. 

By designating a particular value for a specific item from this general explanation, 

one can create a new design each time with its application congruent to its own 

properties. 

 From previous literature about shape optimization, the vital factor 

emerging is the selection of design variables and their shape parameterization [5, 

6]. Selection of multiple variables at a time can cause chaotic implications including 

mismanagement of computational time, whereas choosing few variables may 

produce limited results [7, 8].  Hence, using shapes with few parameters was 

considered more practical method in optimization, where the parameters must be 

able to intuitively define the predictable effect on the surface of shape. 

Previous researches showcased nodal coordinate approach as a primitive 

method of shape optimization, where node coordinates of the discrete finite-
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element model calibrated as design variables [1]. This approach proved ineffective 

for a large number of design variables optimization. Mesh parameterization 

approach [9], the use of solid modeling [10] and the natural design variable method 

[11] were developed to overcome the drawbacks of this basic method. However, 

these methods proved to be costly and often produced restricted optimization 

results. Spline approach particularly Bezier and B-Splines, became the more 

advanced method for optimization where a series of polynomial functions defined 

any shape. This approach suggested that a surface should be represented as a mesh 

of rectangular curvilinear regions where a set of control points would define the 

shape [12]. It depicted that a large number of shape parameters and complex 

geometry was a setback for this approach. 

The aim of this paper is to optimize a parametric shape using minimum 

shape constraints based on 10th order partial differential equations (PDE) with 10 

boundary conditions [7]. This technique follows a boundary-value approach where 

an object’s shape can consists of surface patches bounded by character curves. 

Additionally, a small number of shape parameters proficiently define the surface’s 

shape which facilitates the process of optimization both locally and globally. 

The outline of the paper depicts the following, 

 The study illustrates how a parametric surface can be created by PDE method. 

 A methodology underpinning proficient parameterization of PDE surfaces is also 

catered in this paper. 

 Various examples of design optimization is also a focus of this paper. 
 

2. PDE Surfaces 

PDE method for blend generation was first introduced by Bloor and Wilson [13,1] 

in computer aided geometric design (CAGD). 

Assume a parametric function 𝜑(s, t) giving the surface in 𝐸3where s and t 

belongs to Ð, and Ð is a two dimensional parametric space and 𝜑(s, t) ϵ E3, Such 

that ℜ2(Ð) → E3. The parametric form of the function is: 𝜑(s, t) = (x(s, t), y(s, t), 

z(s, t)) The PDE equation used for this work is: 

       (
𝜕2

𝜕𝑠2
+ λ

2 𝜕2

𝜕𝑡2
)5 𝜑(s, t) = 0                                                                     (1) 

where λ is called a smoothing parameter. Various solutions can be derived 

for equation (1). Bloor and Wilson (1996) outlined the most accepted method where 

solution of the above equation for desired optimum PDE surface can be formulated 
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by boundary conditions. Additionally, the desired geometric shape is acquired by 

considering the vital shape parameters [7,13,14]. 

The choice of parametric domain and boundary conditions pivot the shape 

of surface for acquiring solution of equation (1). Here Ð is usually considered to be 

a rectangle such that, Ð: s0 ≤ s ≤ s1, t0 ≤ t ≤ t1 [3,9]. For optimizing the final shape 

of a model, parameter λ also plays a vital role. 

 Usually, the calculation of x, y and z coordinates with a parameter λ which 

is normally constant but for this paper, we can optimize it according to the desired 

shape and can mold the model as well. Since, the PDE in equation (1) is of tenth 

order; hence, ten boundary conditions are requisite for the solution. Here, ten 

positional curves are considered as ten boundary conditions. Let Ð be a finite 

domain defined as Ð: 0 ≤ s ≤ 1, 0 ≤ t ≤ 2π such that: 

𝜑(0, t) = 𝑓0 (t),     (2) 

𝜑(𝑘1, t) = 𝑓𝑘1
 (t),    (3) 

𝜑(𝑘2, t) = 𝑓𝑘2
 (t),    (4) 

𝜑(𝑘3, t) = 𝑓𝑘3
 (t),    (5) 

𝜑(𝑘4, t) = 𝑓𝑘4
  (t),    (6) 

𝜑(𝑘5, t) = 𝑓𝑘5
  (t),    (7) 

𝜑(𝑘6, t) = 𝑓𝑘6
  (t),    (8) 

𝜑(𝑘7, t) = 𝑓𝑘7
  (t),    (9) 

𝜑(𝑘8, t) = 𝑓𝑘8
  (t),    (10) 

 𝜑(1, t) = 𝑓1 (t).    (11) 

Where 𝑓0 (t), 𝑓𝑘1
 (t), 𝑓𝑘2

  (t), 𝑓𝑘3
  (t), 𝑓𝑘4

  (t), 𝑓𝑘5
  (t), 𝑓𝑘6

  (t), 𝑓𝑘7
  (t), 𝑓𝑘8

  

(t),and 𝑓1 (t) are given ten conditions. The unknowns 𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5, 𝑘6, 𝑘7 and 

𝑘8 in above group of equations belong to (0, 1), such that: 

0 < 𝑘1 < 𝑘2 < 𝑘3 < 𝑘4 < 𝑘5 < 𝑘6 < 𝑘7 < 𝑘8 < 1 

These unknown also reflect the parameters of optimization and may also 

adjudicate the relative position of intermediate curves. By slightly altering these 

parameters, one can optimize the geometric shape as well. Shape can be locally 

controlled by the boundary curves. Therefore, they also locally optimize the final 

shape.  
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Solution of equation (1) is based upon method of separation of variables. 𝜑(s, t) = 

α
0
 (s) +∑ [𝛽𝑛 (𝑠)𝑐𝑜𝑠(𝑛𝑡)  + 𝛾𝑛 (𝑠)𝑠𝑖𝑛(𝑛𝑡)],𝑁

𝑛=1                             (12) 

where 

 𝛼0 = 𝛼00 + 𝛼01𝑠 + 𝛼02𝑠
2 + 𝛼03𝑠

3 + 𝛼04𝑠
4 + 𝛼05𝑠

5 + 𝛼06𝑠
6 + 𝛼07𝑠

7 +

𝛼08𝑠
8 + 𝛼09𝑠

9     ,                                                                                 (13)                              

𝛽𝑛 = 𝛽𝑛1𝑒
𝑎𝑛𝑠 + 𝛽𝑛2𝑒

−𝑎𝑛𝑠 + 𝛽𝑛3𝑠𝑒
𝑎𝑛𝑠 + 𝛽𝑛4𝑠𝑒

−𝑎𝑛𝑠 + 𝛽𝑛5𝑠
2𝑒𝑎𝑛𝑠 +

𝛽𝑛6𝑠
2𝑒−𝑎𝑛𝑠 + 𝛽𝑛7𝑠

3𝑒𝑎𝑛𝑠 +           𝛽𝑛8𝑠
3𝑒−𝑎𝑛𝑠 + 𝛽𝑛9𝑠

4𝑒𝑎𝑛𝑠 + 𝛽𝑛10𝑠
4𝑒−𝑎𝑛𝑠   (14)                                                                                                          

𝛾𝑛 = 𝛾𝑛1𝑒
𝑎𝑛𝑠 + 𝛾𝑛2𝑒

−𝑎𝑛𝑠 + 𝛾𝑛3𝑠𝑒
𝑎𝑛𝑠 + 𝛾𝑛4𝑠𝑒

−𝑎𝑛𝑠 + 𝛾𝑛5𝑠
2𝑒𝑎𝑛𝑠 +

𝛾𝑛6𝑠
2𝑒−𝑎𝑛𝑠 + 𝛾𝑛7𝑠

3𝑒𝑎𝑛𝑠 +         𝛾𝑛8𝑠
3𝑒−𝑎𝑛𝑠 + 𝛾𝑛9𝑠

4𝑒𝑎𝑛𝑠 + 𝛾𝑛10𝑠
4𝑒−𝑎𝑛𝑠     (15)                                                                                                                                                                            

and where all the vector valued constants αi’s, βi’s and γi’s can be determined by 

the given boundary conditions. The final shape of the geometry can be manipulated 

by these boundary conditions as shown in figure 1.  

                           

           Figure 1. Optimum PDE surface                         Figure 2. Ten positional curves 

Figure 2 shows the ten positional curves as boundary conditions. Figure 1 

is the end product by using tenth order PDE.  The parameters 𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5, 𝑘6, 
𝑘7 and 𝑘8 are the shape parameters together with "𝑎 " as shown in equation (1) 

which depicts how these parameters are affect the final shape and also illustrate the 

manipulation of shape by readjustment of their position. Since these parameters 

have a range of 0 to 1, therefore, all parameters can have values between 0 and 1. 

For a particular choice of 𝑘′𝑠  let’s assume the following values: 

                                                  Table 1. Assigned values of shape parameters 

𝒌𝟏 𝒌𝟐 𝒌𝟑 𝒌𝟒 𝒌𝟓 𝒌𝟔 𝒌𝟕 𝒌𝟖 
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0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 

Figure 1 is the outcome of the values shown in table 1. For instance, the 

shape in figure 2 will change if 𝑘4 and 𝑘5 are increased to 0.45 and 0.65 

respectively.  

                     

   Figure 3. Shape parameter  𝑘4 = 4.5     Figure 4. Shape parameter  𝑘5 = 6.5   

The final shape will take the form as shown in Figure 5.           

                                     

  Figure 5. Shape with changed 𝑘4 and 𝑘5           Figure 6. 𝑘7 is chnaged from 0.8 to 0.85  

In Figure 6, 𝑘7 is slightly changed from 0.8 to 0.85. Hence, one can manipulate 

the given geometry according to desired outcome.  

Another benefit of involving more curves is that we can localy control the shape 

of geometry. Following is a simple demonstration of the generated surface using 

PDE of tenth order.  
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Figure 7. PDE plane surface        Figure 8. Ninth boundry curve, z-coordinate of a point 

from z=0 to z=1 

Figure 7 represents a plane surface generated by eqution (1) along with conditions 

(2) to (11).  In Figure 8, only one point is changed from z=0 to z=1 of curve 

number nine. The result shows that we can locally change the shape without 

altering the whole geometry.  

In real world, an insect bite may affects a particular part of the human skin which 

may cause that bitten part of skin to swell locally without tearing the whole skin; 

a shape can be optimized in the similar fashion. 

3. Error Analysis 

It is essential that for a certain set of boundary conditions, various Fourier 

coefficients must be analyzed .The approximate solution can be as follows;  

Ψ(s, t)= 𝛼0(𝑠) + ∑ [𝛽𝑛 (𝑠)𝑐𝑜𝑠(𝑛𝑡) + 𝛾𝑛 (𝑠)𝑠𝑖𝑛(𝑛𝑡)] + 𝐸𝑅𝑅𝑂𝑅 𝑁
𝑛=1 (𝑠, 𝑡)    (16) 

where N reflects the number of Fourier modes. As N is a finite value, so an 

error term is rudimentary which is called remainder ERROR (s, t). This can be 

created in the following way, where coefficients β (s) and γ (s) are determined by 

amplitudes of the nth mode in boundary conditions.  

The term ERROR (s, t) also denotes utilizing high frequency modes to the 

surface. Due to the finite value of N, this term effects the entire shape of the surface. 

The remainder term is defined as: 

ERROR (s, t) =   𝜌1(𝑡)𝑒
𝑤𝑠 + 𝜌2(𝑡)𝑒

−𝑤𝑠 + 𝜌3(𝑡)𝑠𝑒
𝑤𝑠 + 𝜌4(𝑡)𝑠𝑒

−𝑤𝑠 +

 𝜌5(𝑡)𝑠
2𝑒𝑤𝑠 + 𝜌6(𝑡)𝑠

2𝑒−𝑤𝑠 + 𝜌7(𝑡)𝑠
3𝑒𝑤𝑠 + 𝜌8(𝑡)𝑠

3𝑒−𝑤𝑠 +  𝜌9(𝑡)𝑠
4𝑒𝑤𝑠 +

 𝜌10(𝑡)𝑠
4𝑒−𝑤𝑠                       (17) 

where ρ1 , ρ2 , ρ3 , ρ4 , ρ5 , ρ6 , ρ7 , ρ8 , ρ9 , ρ10 and w are acquired by regarding 

a disparity between original boundary conditions and the boundary conditions 

fulfilled by function, where the original boundary conditions are the chosen curves 

which satisfy equation (1): 

x(s, t)= 𝛼0(𝑠) + ∑ [𝛽𝑛 (𝑠)𝑐𝑜𝑠(𝑛𝑡) + 𝛾𝑛 (𝑠)𝑠𝑖𝑛(𝑛𝑡)] 𝑁
𝑛=1                        (18) 
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where, β (s) and γ (s) are achieved from the aforementioned Fourier analysis 

of the boundary conditions. The ten conditions 𝜉0 , 𝜉𝑘1
, 𝜉𝑘2

, 𝜉𝑘3
, 𝜉𝑘4

, 𝜉𝑘5
,  𝜉𝑘6 , 𝜉𝑘7 

, 

𝜉𝑘8
and 𝜉1 are the difference between the original boundary conditions and the 

boundary conditions fulfilled by 𝑋(s, t) , with 

𝜉0 =𝑓𝑡 − 𝑥(0, 𝑡)                                               (19) 

𝜉𝑘1=𝑓𝑡 − 𝑥(𝑘1, 𝑡)                                             (20) 

𝜉𝑘2= 𝑓𝑡 − 𝑥(𝑘2, 𝑡)                                                   (21) 

𝜉𝑘3=𝑓𝑡 − 𝑥(𝑘3, 𝑡)                                           (22) 

𝜉𝑘4=𝑓𝑡 − 𝑥(𝑘4, 𝑡)                                               (23) 

𝜉𝑘5
 =𝑓𝑡 − 𝑥(𝑘5, 𝑡)                                          (24) 

𝜉𝑘6 =𝑓𝑡 − 𝑥(𝑘6, 𝑡)                                          (25) 

𝜉𝑘7 =𝑓𝑡 − 𝑥(𝑘7, 𝑡)                                            (26) 

𝜉𝑘8 =𝑓𝑡 − 𝑥(𝑘8, 𝑡)                                              (27) 

𝜉1=𝑓𝑡 − 𝑥(1, 𝑡)                                                     (28) 

With these conditions ERROR(s, t) can be obtained.    

The constant w in equation (15) is selected from the plausible proximity of 

approximate surface to desired surface. For this, we select N as an equal to λ (N + 

1) which is adjacent to the actual decay rate of difference [Ψ(s, t) − 𝑥(s, t)] [7]. The 

choice of N plays a vital role in error terms that is, an increase in the value of N 

causes a decrease in the error ERROR (s, t).  For a good approximation N ≥ 6 is a 

superlative choice which minimize the error ERROR (s, t).  

4. Conclusion 

The determination, manipulation or optimization of a geometric surface requires 

certain boundary conditions. The manipulation of these conditions particularly the 

eight parameters 𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5, 𝑘6, 𝑘7 and 𝑘8 along with ‘𝑎’ will aid in the 

development of 3D geometry. The current paper explains the generation of PDE 

surfaces via ten curves as boundary conditions. The paper also discusses how an 

optimum surface can be achieved by the flexibility of the method, even when a 

surface is either close or an open surface. The study also exemplifies how a surface 

can be manipulated by the readjustment of the boundary conditions, where eight 

parameters called as shape parameters have been introduced to discuss how 

effectively they can change the final shape of a model.   



Syed Khawar Nadeem Kirmani and Raja Noshad Jamil 

27 

 

References 

[1] Warren J, Weimer H. Subdivision methods for geometric design: A constructive 

approach. Burlington: Morgan Kaufmann publisher, 1995. 

[2] Zhang JJ, You LH. Surface representation using second, fourth and mixed order 

partial differential equations. International Conference on Shape Modeling and 

Applications, Genova, Italy, May 7–11, 2001. 

[3] Zhang JJ, You L. PDE based surface representation vase design. Comput 

Graphics. 2002;26:  89–98.  

[4] Faux ID, Pratt MJ. Computational geometry for design and manufacture. New 

York: Halsted Press; 1979. 

[5] Yamashina H, Fukushima K, Saijo A. CAD for free form surfaces. Camput 

Integr Manuf Syst. 1996;9(1): 9–18.  

[6] Davis P. Interpolation and Approximation. New York: Dover Publications; 

1975.  

[7] Piegl L. On NURBS: A Survey. IEEE Comput Graphics Appl. 1991;11(1): 55–

71.  

[8] Bloor MIG, Wilson MJ.  Generating blend surfaces using partial differential 

equation. Comput Aided Des. 1989;21(3); 165–171.  

[9] Ugail H, Bloor MIG, Wilson MJ. Techniques for interactive design using the 

PDE method. ACM Trans Graphics. 1999;18: 195–212.  

[10] Piegl L. Recursive algorithms for the representation of parametric curves and 

surfaces. Comput Aided Design. 1985;17(5); 225–229.  

[11] Schumaker LL. Spline functions: Basic theory. New York: John Wiley and 

Sons; 1981.  

[12] Bloor MIG, Wilson MJ. Using partial differential equations to generate free 

form surfaces. Comput Aided Des. 1990;22(4): 202–212.  

[13] Du H, Qin H. Direct manipulation and interactive sculpting of PDE surfaces: 

Proceeding of Eurographics 2000, Interlaken, Switzerland. Comput Graphics 

Forum. 2000;19: 261–270.  

 [14] Ugail H, Bloor MIG, Wilson, MJ. Manipulations of PDE surfaces using an 

interactively defined parameterisation. Comput Graphics. 1999;24(3): 525–534.  


