University of Management & Technology School of Science Department of Chemistry

CH-604 ADVANCED INORGANIC CHEMISTRY (A)						
Lecture Schedule	Mon/Tue 1830-2130	Semester	Spring 2024			
Pre- requisite	Graduate Standing	Credit Hours	3			
Instructor(s)	Dr. Sohail Nadeem	Contact	sohail.nadeem@umt.edu.pk Extension. 3436			
		Moodle Link				
Office	2 nd Floor, South Block,	Office Hours	Mon, 15:00-18:00			
	S3-32.	liouis	Tue, 15:00-18:00			
Teaching	For the past ten years, I l	have had t	he privilege of teaching inorganic chemistry to			
Philosophy	numerous graduate students. My teaching career is more of a teaching calling, a passion and love to connect the material and beauty of the science to the students. Since I've been teaching, my mantra is "It's all about the students!" I do my best to encourage and challenge my students, to make my courses relevant to their interests/world, and to have students actively participate in their learning. In addition, I want my students to be well-trained in critical thinking, problem-solving ability, questioning, and extending knowledge. I desire that my students will have the best learning experiences as a student. In turn, they will be better-prepared and develop more quickly as deep thinkers and will connect their learning experience with their life experience. For these reasons, I am constantly rethinking and reworking my teaching methods by paying close attention to best practices for the best interest of my students.					
	My teaching philosophy has evolved over the years and would not be what it is today without the creative freedom that the Chemistry Department at UMT has entrusted me. I am grateful for all of the constructive criticism and praise that students have offered and for the support from my colleagues. Fellow faculty and students have been my great teachers as I am still a student, still a learner. I absolutely love my job. I can't imagine doing anything else with my professional life.					
Course Description	physical/chemical techni related to the molecular	ques such term symb	l concepts in bonding of molecules, the as diffraction methods, UV/Vis, IR <i>etc</i> . Topics ols and its applications to the spectroscopic studies to diagrams and their utilization. Brief introduction			

		•	•	•	mistry of nonmetals have lecules has been added.			
Expected Outcomes	been discussed. Concepts of interfaces, symmetry of the molecules has been added. Participants who successfully complete this course will learn and understand the advanced concepts of inorganic chemistry which includes;							
	-		-	e atomic numbers e tra spin orbit coupl				
	Electronic Stat	es and T	erm Symbols ele	ctronic states for oc	tahedral complexes,			
				l-block complexes.				
				erties of transition n s and their mode of	-			
Course		ation of	the elements in t	ne periodic table and	d their universal			
Objectives:	abundance.							
	Understanding compounds.	of physi	cal techniques ir	volved for the analy	vsis of inorganic			
	To understand the general procedure for the correct electronic configuration of high atomic number elements and their bonding order in various molecules.							
	To understand the photochemical processes and their applications							
	Term symbols of the coordination compounds with emphasis on bonding and electronic spectra.							
	Molecular sensors and their role in biological systems.							
	Acquaintance v	with the	current literature	in inorganic chemis	stry			
Textbook(s)	1. Shriver and Atkins' Inorganic Chemistry, Fifth Edition, W. H. FreemanandCompany, 41 Madison Avenue, New York, NY 10010. 2023.3000000000000000000000000000000000000							
	Side Readings:							
	2. J H Huheey, Inorganic Chemisry - Principles, structure and reactivity, Harper and							
	Row Publisher, Inc. New York (2008).							
	3. James E House Inorganic Chemistry; Academic Press is an imprint of Elsevier							
	30 Corporate Drive, Suite 400, Burlington, MA 01803, USA (2008). 4. Wai-Kee Li Advanced Structural Inorganic Chemistry, Oxford University Press, 3							
	Great Clarendon Street, Oxford OX2 6DP. UK. 2008							
Attendance	80% attendar		,	2000				
Grading	Quizzes:	10%	Presentation:	05%				
Policy	1	0 = 0 (Case Study:	05%				
Policy	Assignments:	05%	Case Study.	0370				

Course Schedule

Week	Lecture #	TOPICS	СН	SECTIONS
				Page #
1*	1	Introduction to advanced inorganic chemistry, Bonding in Inorganic Compounds, Formation of the Elements (the Big Bang), The Detectable Elements, Subatomic Particles Involved in the Formation of the Elements, What's Out There? Is There Enough Matter for the Formation of New Galaxies?, Keyhole Nebula in Carina, Contrasts with organic Chemistry,	1	(Shriver, 01-16)
2*	2	Simple bonding Theory, VBT, MOT, VSEPR, LFT,	8	(Meisler Tarr 45-77)
3*	3	Bonding in metal complexes, multiple bonds <i>etc</i> .	8	(Shriver, 230- 240)
4*	4	MOT Bonding concepts of diatomic molecules, Finding the bond order.	8	(Shriver, 241- 250 179-196)
5*	5	Molecular symmetry, An introduction to symmetry analysis, Symmetry operations, elements and point groups, Character tables, Applications of symmetry, Polar molecules, Chiral molecules, Molecular vibrations,	6	(Shriver, 179- 189)
6*	6	The symmetries of molecular orbitals, Symmetry-adapted linear combinations, The construction of molecular orbitals, The vibrational analogy, Projection operators.	6	(Shriver 190- 200)
7*	7	Electronic States and Term Symbols, electronic states for diatomic molecules and their consequences, electronic states for octahedral complexes,	11	(Miessler Tari 379-407)
8*	8	electronic states for octahedral complexes,	11	(Miessler Tari 379-407)
9*	9	(MID TERM EXAM)		
9*	9	Interpretation of Spectra of d-metal ions, splitting of spectroscopic states, orgel diagrams, racah parameters and quantitative methods, the nephelauxetic effect, tanabe-sugano diagrams, charge transfer absorption.	18	(House 645-668)
10*	10	Electronic Absorption Spectra: Spectra of Octahedral and Tetrahedral complexes (d1 and d9) systems, Energy level diagrams d2-d8, spectrochemical series, remarks on intensities and line widths of charge transfer spectra	15	(Shriver 535- 546)
11*	11	Ionic radii, John-Teller effects, Thermodynamic effect of d-orbital splitting; Formation constants of complexes octahedral vs Tetrahedral coordination.	08	(Shriver 515- 546)

12*	12	Metal carbenes, metal carbynes, Synthesis, Chemical Reactions, bridging carbenes and carbynes, metathesis, oligomerization and polymerization reactions of Alkenes.	05	(Shriver 250- 251)
13*	13	Biological inorganic chemistry, The organization of cells, The physical structure of cells, Transport, transfer, and transcription, Sodium and potassium transport, Calcium-signalling proteins, Zinc in transcription, Selective transport and storage of iron. Iron- transport proteins in higher organisms. Release of iron from transferrin, Ferritin, the cellular Fe store.	26	(Shriver 763- 779)
14*	14	Oxygen transport and storage, Myoglobin, Haemoglobin, Other oxygen-transport systems, Reversible O 2 binding by small- molecule analogues. General considerations.	26	(Shriver 780- 788)
15*	15	Iron-sulfur clusters, Copper electron-transfer centres Sensors,	26	(Shriver 788- 815)
16*	16	Iron proteins as sensors	26	(Shriver 788- 815)
17	17	The principle of O2 sensing by prolyl oxygenases. Proteins that sense Cu and Zn levels. Biominerals, Common examples of biominerals.	26	(Shriver 788- 815)
18*		Final Exam		

* - Tentative

https://commons.libretexts.org/book/chem-151351