

University of Management & Technology School of Science Department of Chemistry

CH 602 Advanced Organic Chemistry			
Resource person	Dr Ayesha Mohyuddin	Contact	ayesha.mohyuddin@umt.edu.pk
Office	2 nd Floor, South Block, 3S-32	Credit Hours	3
Course Description	Modern organic chemistry is often viewed as involving hundreds of individual reactions. Each of these reactions has its own particular advantages and disadvantages. At first glance it would appear to be an impossible task to grasp even a fraction of the information known about these reactions, especially in a one-semester class. Fortunately, however, many of these reactions can be understood in the context of a few fundamental principles. An understanding of these principles can allow the chemist to develop methods for what kinds of transformations can be done, for how chemical reactions can be controlled, and for how chemistry can be used to selectively piece together molecules with a wide range of architectural diversity. In this course, the synthesis of several complex organic molecules will be examined. These molecules will provide a backdrop for exploring the factors that govern particular transformations within a synthetic sequence, as well as the choice of the overall synthetic route itself.		
Expected Outcomes	 This course will develop the students' ability to perform a wide variety of organic reactions with an emphasis on theory and reaction mechanisms. After completing this course students will be able to: ✓ To understand how different experimental techniques are used to elucidate organic reaction mechanisms ✓ To become more familiar with the three main mechanistic classes (polar, radical, pericyclic) of organic reactions. ✓ To understand the key issues involved in organic synthesis ✓ Employ the knowledge of organic syntheses for research ✓ Utilize their skills to understand the mechanisms involving preparation of various types of pharmaceutical and industrial products regarding their career perspective 		
Reference book(s)	 Smith, M. B., "March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure", 7th ed., John-Wiley & Sons, Inc., (2018). Solomons, T. W. G. and Fryhle, C. B., "Organic Chemistry", 12th ed., John-Wiley & Sons, Inc., (2017) Morrison, R.T. and Boyd, R. N., "Organic Chemistry", 6th ed., Prentice Hall, New Jersey, (1992). Sykes, P., A Guide Book to Mechanism in Organic Chemistry, 6th ed., Pearson Education, (1986). Carey, F. A. and Giuliano, R. M., Organic Chemistry, 9th ed., McGraw-Hill Education, (2013) 		
Grading Policy	 Quizzes & Assignments: 2 Case study Presentation 	0% (15+5) 5% 5% • Final • 75% exam	erm: 25% Exam: 45% attendance is mandatory to give final

University of Management & Technology School of Science Department of Chemistry

Advanced Organic Chemistry CH-602

Lecture plan

Week	TOPICS		
1	Mechanism & Reactions: Reduction		
2	Mechanism & Reactions: Oxidation		
	Activity: Significance of Oxidation and Reduction in real life		
3	Conformational isomerism: In open chain system, In six membered rings, Ring strain and reaction mechanism		
4	Stereochemistry: Nomenclature and Configuration of Chiral compounds, , Molecules with more than one stereocenters, Method of resolution, Asymmetric synthesis		
5	Geometric Isomerism: In double bond, In monocyclic Compounds, In fused and bridged ring structure, stereospecific and stereoselective syntheses Activity: Significance of Stereochemistry in real life		
6	Carbocations & Carbanions: Naming, Stability, Structure, Generation & Reactions		
7	Free radicals & Carbenes: Stability, Structure, Generation & Reactions		
	Activity: Examples of Organic Reaction Intermediates		
8	Nucleophilic Rearrangements: Wagner-Meerwein; Pinacol; Semipinacol; Tiffeneau-Demjanov; Benzil-Benzilic Acid; Beckmann; Baeyer-Villiger		
	Activity: Applications of Nucleophilic Rearrangements in real life		
9	MID TERM		
10	Electrophilic Rearrangements: Favorskii; Stevens; Sommelet– Hauser; Wittig; Fries.		
	Activity: Applications of Electrophilic Rearrangements in real life		
11	Free Radical Rearrangements: Hunsdiecker; Barton Decarboxylation; Sandmeyer; Kolbe electrolysis; Gomberg– Bachmann.		
	Activity: Applications of Free Radical Rearrangements in real life		
12	Aliphatic and Aromatic Nucleophilic Substitution reactions: Mechanism, S _N 2, S _N 1, S _N i, Ion pairs, Allylic Rearangements		
13	Aromatic Electrophilic Substitution reactions: Mechanism, S_{E1} , Ortho/Para ratio		
14	Aromatic Electrophilic Substitution reactions: Ipso Attack, Orientation in ring system		
15	Aliphatic Electrophilic Substitution reactions: Mechanism, S_E2 , S_Ei , Reactivity		
16	Elimination reactions: Mechanism, E2, E1, E1cB, E2C, Regiochemistry of Double bond Activity: Significance of Substitution and Elimination reactions		

17	Overview of the Elimination and Substitution Reactions
18	FINAL EXAM