

University of Management and Technology

School of Commerce and Accountancy Quaid e A3am Campus

Course Outline

Course Title: Digital Logic Design				
(CS301)				
Program		ADP(CS)		
Credits Hours		3		
Duration		15 Weeks / 30 Sessions		
Prerequisites				
Resource Person				
Contact/Email				

Course Objectives:

The Goals the course is:

- 1. Introduce the concept of digital and binary systems
- 2. Be able to design and analyses combinational logic circuits.
- 3. Be able to design and analyses sequential logic circuits.
- 4. Understand the basic software tools for the design and implementation of digital circuits and systems.
- 5. Reinforce theory and techniques taught in the classroom through experiments and Projects in the laboratory.

Teaching-Learning Methodology:

Note: <u>Select methodologies as per nature of the course.</u>

- Lectures
- Recommended Text/Supplementary Texts
- Handouts
- Case Studies
- Skill Development Exercises
- Project Report/Term Paper
- Any other Teaching Tool.....

Recommended Text Book:

1. Logic and Computer Design Fundamentals2nd Edition

By: M. Mano

Reference Books:

Digital fundamentals	9th Edition
-	By: Floyd

Page 2 of 4

Assessment & Evaluation:

Note: Please Specify the Weightage you want to assign to assignments and Final Project/ Project presentation/Presentation.

Quizzes	15%
Assignments)
Final Project	20% }
Project Presentation/Presentations	J
Mid Term	25%
End Term Exam	<u>40%</u>
Total:	100

SEHEDULE OF ACTIVITIES

Week	Contents/Topics to be Taught	Tasks/Activities
1	Introduction, Binary Numbers,	Course Outline
	Number Conversion	Distribution
	Decimal Numbers	
2	1's and 2's Complements Arithmetic Operations with unsigned numbers	
	Arithmetic Operations with disigned numbers	
	Octal & Hexadecimal number	
3	Binary Coded Decimal (BCD)	Ouiz 1
5	Conversions	2002 1
	The Inverter, AND, OR gates	
4	NOR and NAND gates	Assignment 1
	XOR and XNOR	
F	Boolean Algebra	
5	DeMorgan's Theorem	
	Simplification using Boolean algebra	
6	Karnaugh Map	A
	SOP and POS expressions Karnaugh Map, SOP, POS minimization	Assignment 2
	Basic Combinational logic circuits	
	Basic Combinational logic circuits	
7	Universal property of NAND gates	Quiz 2
	Universal property of NOR gates	
8	MID TERM EXAMINATION	

Note: Please fill the tasks/activities column according to your course plan

9	Combinational logic using NOR gates	
	Combinational logic using NOR gates	
	Basic Adders, Half Adders Full Adders	
	Basic Subtractors	Quiz 3
10	Parallel binary Adders	
	Multipliers	
	Decoder	
11	Encoder	
	Real time logic Implementation	
	Multiplexer or Data selector	
12	De-Multiplexer	Quiz 4
	Application of MUX and DeMUX	
	Latches	
13	Gates Latches	
15	Edge-triggered Flip Flops	
	Edge-Triggered Flip Flops	
14	D-Flip flop	Assignment 4
11	S-R Flip Flops	rissignment
	J- K Flip Flops	
	Asynchronous counter operation	
15	Synchronous counter operation	Presentations (if any)
15	SISO shift registers, SIPO shift registers	r resentations (ir any)
	PIPO shift registers	
16	END TERM EXAMINATION	