

ACM-ICPC Lahore Regional 2017

Problem 1

Violent Numbers

Mr. Drump is afraid of the growing terrorism and wants some serious counter measures. His country’s

think tank reported to him that a person could possibly be a terrorist if his/her date of birth (DoB) could

be approached by violent numbers. You’re required to help Drump to identify terrorists.

We say, DoB could be approached if it has at-least X violent numbers (from 1 to DoB’s integer equivalent)

where X is the day value of DoB. Let D represents DoB's integer equivalent, and Y is any number from 1

to D, then we say Y is violent if:

 Sum of D's even digits is a factor of ∑n where n is even and have values in range 0<n ≤ Y
 Let Z = ∑n where n is odd and have values in range 0<n≤ Y, Z is funny and divisible by the sum

of odd digits of D

We say, a number is funny who is divisible by at-least five integers excluding 1 and number itself.

Input

The input consists of multiple test cases. The first line of input is the number of test cases N where

(0<N<5000). Each of the following N lines contains a DoB as Day<space>Month<space>Year where valid

year would be 1 to 1010. For day and month assume there would be valid values. For example, 18-Aug-

1995 would be 18 8 1995 and its integer equivalent is 1881995.

Output

For each test case, print a single line that says "CaseN:" where N is the test case number followed by the

text “Terrorist Found” if the given DoB could be approached, print "Peace" otherwise.

Sample Input Sample Output

4
1 1 1
1 1 2
5 2 7
23 7 99

Case1:Peace
Case2:Terrorist Found
Case3:Terrorist Found
Case4:Terrorist Found

ACM-ICPC Lahore Regional 2017

Problem 2

Malicious Strings

Hackers use number of ways to hijack the execution flows to be able to execute their malicious code.

One of these hijacking methods is buffer overflow. A buffer is overflowed when it’s filled with more data

than buffer’s size. Buffer overflow attack finds a buffer, in local variables of a function, which could be

overflowed and then prepares a string in such a way that could load the malicious code’s starting address

in place of return address (RA) in stack frame of the current function. So, when the function returns;

instruction pointer (IP) gets loaded with malicious code’s address eventually succeeding the hacker.

Following is a typical x86 stack frame.

In this problem you’ll be given some strings. Each string could contain multiple malicious sub- strings and

you’re required to count these ones. A string is malicious if it contains a valid address that could possibly

be loaded in place of RA. An address is valid if it starts with "0x", only contains hex digits and meets the

system architecture i.e. 8bit system’s address would be of 1 byte, 16bit’s would be of 2 bytes and so on.

Valid hex digits are 0-9 and A-F (case insensitive).

Consider each character of string equal to one byte in size except hex digits in a valid address which
would be of half byte. Please also note that 0x would just behave as an escape sequence of valid
address and equals to zero bytes in case of valid address otherwise two bytes.

While looking for valid addresses take the non-greedy approach. For example, string "0x12A0x1F", in a
16-bit architecture, should be read having two parts of "0x12A" and "0x1F", not as, "0x12A0" and
"x1F".

ACM-ICPC Lahore Regional 2017

Input

The input consists of multiple test cases. The first line of input is the number of test cases N where

(0<N<5000). Each of the following N lines contains an integer, K, representing system’s architecture

and could be 8, 16, 32 and so on up to 210. This is followed by a string.

Output

For each test case, print a single line that says "CaseN:" where N is the test case number followed by

count of malicious sub-strings found in that string. If the count is zero print “Clean String”.

Sample Input Sample Output

4
8 xyBsheu0xAuo12334%83462Erfh
8 jhd720x63@#&0xAAA273t0xAkwg@#^2qeh0x12
16 jhd720x63@#&0xAAA273t0xAkwg@#^2qeh0x120x1F
16 sh%rds56E^4s0xFFFF0xAAAAopop0x1234

Case1:Clean String
Case2:3
Case3:1
Case4:2

Hint

In a malicious sub-string; there must be Z bytes before a valid address that would be written over

memory area of buffer-overflowed and saved EBP. Hence Z >= 1 + K/8.

ACM-ICPC Lahore Regional 2017

Problem 3

Beautiful Face

Tania is getting married soon. She has many wishes to get true, one of which is to look beautiful

enough. You’re required to help Tania in calculating her beauty, so, she can take necessary steps to

meet her beauty wish accordingly.

You’ll measure her beauty with reference to following ideal face represented in a 15x15 grid

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 3 5 3 0 0 0 3 2 1 0 0 0
0 0 0 5 3 5 0 0 0 4 5 6 0 0 0
0 0 0 3 0 3 0 0 0 7 8 4 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 5 0 0 0 0 0 0 0
0 0 0 0 0 0 0 8 0 0 0 0 0 0 0
0 0 0 0 0 0 0 13 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 3 5 8 13 21 34 55 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

and broken down as following:

 Left eye is a 3x3 grid whose elements sum to 30.
 Right eye is also a 3x3 grid whose elements sum to 40.
 Nose is a 1x6 grid whose elements represent a Fibonacci series.
 Lips are a 1x7 grid whose elements also represent a Fibonacci series.

Tania’s face will also be represented in a 15x15 grid and beauty will be a floating-point value calculated
as:

A = cosine similarity of left eyes
B = cosine similarity of right eyes

C = cosine similarity of noses
D = cosine similarity of lips

Beauty = A + B + C + D

A, B, C and D could be floating-point values, truncate them up-to four decimal places, if needed.

Cosine similarity could be computed of vectors not matrices. Nose and lips are already vectors but eyes
need a conversion. A 3x3 eye would constitute a 1x9 vector whose first three elements will be first row

of eye; middle three will be second row resulting last three equal to third row.

ACM-ICPC Lahore Regional 2017

Here is the formula to calculate cosine similarity:

where 0<= Ai , Bi <=5000 are components of vector A and B respectively.

The resulting similarity ranges from −1 meaning exactly opposite, to 1 meaning exactly the same, with 0

indicating orthogonality, and in-between values indicating intermediate similarity or dissimilarity.

The Fibonacci series is a sequence, called the Fibonacci sequence, characterized by the fact that every

number after the first two is the sum of the two preceding ones:

0, 1, 1, 2, 3, 5, 8, 13, 21, ...

There is another headache; in Tania’s face grid; eyes, nose and lips are not placed as of ideal grid but on

random locations, nose could be horizontal and lips vertical. So, first you need to search these parts, in

15x15 grid, then find the similarities. To make the matter simple, let’s assume there will be no

duplications, exactly one 3x3 grid sums to 30, exactly one to 40, exactly one pattern builds nose and

exactly one lips. Further assume there will be no overlaps of these four parts in grids.

Input

The input consists of multiple test cases. First 15 lines of input represent the ideal face grid. Next line of

input is the number of test cases N where (0<N<5000). Each of the following 15 lines will represent a grid

separating each value with space.

Output

For each test case, print a single line that says "CaseN:" where N is the test case number followed by

“Beautiful” if beauty is greater than 3.3000 otherwise print “Need Cosmetics”. While comparing real

numbers an error up-to 0.0010 is tolerated and acceptable.

In a given 15x15 test grid there may be no eye(s), nose or lips. In that case print “Lips” if lips are not

present, print “Nose” for missing nose, print “Left Eye” for left and “Right Eye” for right eye missing, print

“Eyes” if both eyes are missing, print “No Face” if all of the parts are missing. Apart from these above

mentioned cases, if multiple parts are missing then print them alphabetically in title case (first character

in caps) separating by commas (,) using Nose, Lips, Left Eye and Right Eye. For example, print “Lips, Nose”

if nose and lips are missing and print “Left Eye, Lips” if left eye and lips are missing.

ACM-ICPC Lahore Regional 2017

Sample Input Sample Output

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 3 5 3 0 0 0 3 2 1 0 0 0
0 0 0 5 3 5 0 0 0 4 5 6 0 0 0
0 0 0 3 0 3 0 0 0 7 8 4 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 5 0 0 0 0 0 0 0
0 0 0 0 0 0 0 8 0 0 0 0 0 0 0
0 0 0 0 0 0 0 13 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 3 5 8 13 21 34 55 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 3 2 1 0 0 0 0 0 0 0 0 0 0 0
0 4 5 6 0 0 0 0 0 0 0 0 0 0 0
0 7 8 4 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 3 5 8 13 21 34 55 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 3 5 3
0 0 0 0 0 0 0 0 0 0 0 0 5 3 5
0 0 0 0 0 0 0 0 0 0 0 0 3 0 3
0 0 0 0 0 0 0 0 0 0 0 1 30 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 21 34 55 89 144 233 377
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 2 10 0 0 0 0
0 0 0 0 0 0 0 0 0 0 10 0 0 0 0
0 0 0 0 0 0 0 0 0 0 10 0 10 0 0
0 0 0 0 0 0 0 0 0 0 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
377 610 987 1597 2584 4181 0 0 0 0 0 0 0 0 0

Case1:Beautiful

Case2:Need Cosmetics

Test 1

Test 2

Reference
Face

ACM-ICPC Lahore Regional 2017

Problem 4

Neighbor Identification

Central city has a unique home arrangement. Everyone wants to

live near to center. Therefore, each new home is built around the

boundary of last build homes. See arrangement of 81 homes for

better understanding; however; there can be 263 homes.

Unfortunately a virus spread in the city and people got infected.

Health department wants you to find left, right, up, down

neighbors of an infected person for immediate treatment to

prevent serious damage.

Input

The first line of input is the number of test cases N (0<N<5000). Each of the following N lines contains an

integer K where (0<K<=263)

Output

For each test case, print a single line that says "CaseN:" where N is the test case number followed by four

neighbors in order of left, up, right, bottom

Sample Input Sample Output

5 

21

38

45

80

1234567890123456789

Case1:22 8 20 42

Case2:39 37 65 67

Case3:76 46 22 44

Case4:119 81 49 79

Case5:1234567890123456790 1234567885679012368
1234567890123456788 1234567894567901218

50 51 52 53 54 55 56 57 58
 81 26 27 28 29 30 31 32 59
 80 49 10 11 12 13 14 33 60
 79 48 25 2 3 4 15 34 61
 78 47 24 9 1 5 16 35 62
 77 46 23 8 7 6 17 36 63
 76 45 22 21 20 19 18 37 64
 75 44 43 42 41 40 39 38 65
 74 73 72 71 70 69 68 67 66

ACM-ICPC Lahore Regional 2017

Problem 5

Walk on a Tree

Binary Tree is a useful data structure where each node has at most two children, usually they are

distinguished as left and right child. The node having the children is called parent. An instruction to

walk on a binary tree is a string consisting of the letters L and R where L stands for move left and R for

move right.

In this problem you will simulate a walk on a completely filled binary tree of height at most 100.

Completely filled means tree has maximum possible nodes according to its height. The walk will always

start at the root of the tree and will be specified by an instruction string S such that the length of S is

always less than that of the height of the tree. The only trick, while following the instructions in S, is

that you may skip any instruction in the string S (possibly discarding all of them).

Your job is to compute the number of nodes the simulation can end up after following the instruction

string S.

For example: Suppose: S = LR. Then following S we can end up in four different nodes.

1. Skipping all letters: we will be at the root node. 

2. Skipping L and following R: we will be at the right child of the root node. 

3. Following L and Skipping R: we will be at the left child of root node. 

4. Following both L and R: we will be at the right child of the left child of the root node.
Input

First line of the test file contains an integer N denoting number of test cases. Hence, follow N test

cases. Each test case consists of a number H specifying the height of the tree followed by a non empty

instruction string S.

You may assume that there will not be any letter other than L and R in the string S and that the length

of the string S will be less than the height of the tree H.

Output

For each test case print "CaseN:" where N is test case number, followed by the number of nodes we

can end up finally. Since the answer may be very large, you have to give the answer modulo 21092013.

Sample Input Sample Output

2 

10 L
100 LR

Case1:2
Case2:4

ACM-ICPC Lahore Regional 2017

Problem 6

Protein Synthesis

Professor Abdul is studying the protein synthesis in Centaurea solstitialis a plant species otherwise
known as Knapweeds in common parlance. Thanks to his rigorous post-doctoral hackery and wizardry
Abdul has identified that the synthesis is in fact a linear transformation of all the amino acid
compounds consumed in the process; essentially meaning that given a sequence of amino acid
compounds the protein synthesis will be identical regardless of the order in which each compound was
consumed.

Now as part of his research experiment Abdul wants to conduct a comparative study among different
recorded instances of controlled protein synthesis.

Your job is to help write a program that given two sequences of amino compounds, determines
whether or not the protein synthesis is going to yield an identical result in both instances.

Input

The input consists of multiple test cases. The first line of input is the number of test cases N where

(0<N<5000). Each of the following 2N lines contains N pair of strings to test, each unique character in

the string will represent a different type of amino acid compound. Each string will be under 232

characters in length.

Output

For each test case, print a single line that says “CaseN:”, where N is the test case number followed by

the text “YES” if the two strings will yield an identical protein synthesis otherwise print “NO”.

 Sample Input Sample Output

3
HILMPSTV
HILTSMVP
stvlmpih
stvlmpii
HE%JKHG ERKJG;clk
k%KKGHEJlRJ ;EHGc

Case1:YES
Case2:NO
Case3:YES

ACM-ICPC Lahore Regional 2017

Problem 7

Non-Quantum Entanglement

Alt-Corp Multinational (ACM) has created the world’s first quantum computer and they are now

launching a domain specific language along with a proprietary script execution engine. This product is

expected to bring the company a lot of revenue.

Of course, the customers of this product are learned software craftsmen and pragmatic physicists who

have mastered the concept of modularization and like to breakdown the problem at hand into a

number of sub-programs or scripts that depend on each other in a spectacularly messy fashion, hence

upholding the coveted ethos of software reusability.

As you can imagine that each customer uses this product in a way that they have multiple scripts to

execute and all these scripts have various dependencies on each other. Now ACM’s product owner is

losing sleep over how to efficiently determine a “sane-order” in which the user submitted scripts can

be executed. From usability point of view customers cannot be expected to submit their scripts in said

“sane-order” because they are already too busy disentangling the quantum bits in their heads. So, like

all SCRUM projects, this opportunity has befallen on the team’s junior most engineer Taimur, who has

been tasked to determine such a “sane-order”.

Given a list of scripts to execute and their dependency on each other, your task is to help Taimur

determine an order in which the list of scripts can be executed while honoring their dependencies.

Input

First line lists the number of test cases N, followed by N test cases. First line of each test case contains a
list of K scripts to be executed. Subsequent K lines contains comma-separated list of all the scripts that
a given script depends on.

For example: Script1=Script2,Script3,Script4
Means that execution of scripts (Script2,Script3,Script4) is a prerequisite for the execution of Script1.
It can be assumed that there will be no circular dependency amongst the submitted scripts.

Output

For each test case, print a single line that says "CaseN:", where N is the test case number, followed by a

sane order that scripts can be executed in.

In case of a tie between a pair of scripts: the script that appeared first in the original input list (as found

in the first line of each test case) should be given precedence.

ACM-ICPC Lahore Regional 2017

Sample Input Sample Output

2
A,B,C,D,E,F,G,H,I,J
A=J
B=A
C=A,B
D=A,B,C
E=A,B,C,D
F=A,B,C,D,E
G= A,B,C,D,E,F
H= A,B,C,D,E,F,G
I= A,B,C,D,E,F,G,H
J=
S1,S10,S15,S16,S17,S18
S1=
S10=S15,S16
S15=S16
S16=S17,S18
S18=
S17=

Case1:J,A,B,C,D,E,F,G,H,I
Case2:S1,S17,S18,S16,S15,S10

ACM-ICPC Lahore Regional 2017

Problem 8

Nature Retreat

The corporate big-wigs at the Alt-Corp Multinational (ACM) have had the epiphany to instigate a team

building exercise for all their departments.

In an effort to fuse the collaborative nature of an open office floor and the traditional serene nature

retreat they have decided to conduct this exercise in the beautiful apple orchards of Swat valley.

Each team will have an orchard of their own and their task is to maximize the collection of apples by

moving diagonally through the orchard’s entry all the way to its exit.

The programming language design division of the ACM is a very competitive bunch and in order to

uphold their intellectual superiority over rest of the company, they have decided to hack the exercise

and finish it as soon as possible and then go sightseeing in the Swat valley. As usual this requirement

has been handed out to the junior most engineer Taimur.

Your job is to help Taimur determine the maximum number of apples that can be picked up in a given

orchard under a number of constraints.

You have a rectangular apple orchard full of ripe apples. The orchard is divided into squares and is

represented by a grid. Each element in the grid is an integer, showing the number of apples at the

corresponding square in the orchard.

Your goal is to collect as many apples as you can by walking from the bottom left corner of the grid to

the top right corner, taking all apples in each square along the way. From a given square you can only

go either up, or to the right.

For example, consider that this is the orchard:

4 0 1

1 0 0

0 4 0

At most you can collect 6 apples, by going up (+1), up (+4), right (+0), right (+1).

Now to make things even more interesting: you also have T tokens. While you are walking in the

orchard, you can use the tokens to double the number of apples on the current square. You can only

use one token on any given square.

ACM-ICPC Lahore Regional 2017

Input

First line contains the total number of tests N the first line of each test has the following format:

R<space>C<space>T. Where:

R = Number of rows of the orchard (0 < R <= 200)

C = Number of columns of the orchard (0 < C <= 200)

T = Number of tokens that must be used to maximize the collection of apples (T is a non-negative

integer and will never exceed the length of the shortest path of orchard)

Next R lines contains C values in a space separated list, detailing the layout of the orchard

Output

For each test case, print a single line that says "CaseN:" where N is the test case number followed by

the maximum number of apples that can be collected having applied the tokens.

Sample Input Sample Output

2
3 3 2
4 0 1
1 0 1
0 4 0
1 3 3
4 1 0

Case1:11
Case2:10

ACM-ICPC Lahore Regional 2017

Problem 9

Decode Rolex Fan Code

Rolex Fan is a large fan manufacturing company facing product duplication by some fraudulent
companies. They solve the problem by placing code on its product. They instructed all shopkeepers to
verify the product by confirmation of code from company. Code is designed in following steps:

1- Take random hexadecimal number of size, where
3 < size <= 10000

2- Convert hexadecimal number into binary number
3- Rearrange binary number. Pick every binary digit at index

divisible by 4 (starting from 0 index) and place at right side
of the number

4- Group binary number into set of 3 elements. Start from left
side, add 0's to last group, if required

5- Take One's complement (toggle/invert each bit)

6- Next make group of 4 elements starting from left side, add
0's to last group, if required

7- Again take One's complement of number
8- Finally convert binary into hex number. It is the final code

Example: (Hexadecimal #: A7BE)
 A 7 B E
1010 0111 1011 1110
 010 111 011 110
1 0 1 1

010 111 011 110 101 1
010 111 011 110 101 001

101 000 100 001 010 110

1010 0010 0001 0101 10
1010 0010 0001 0101 0010

0101 1101 1110 1010 1101
 5 D E A D
Coded Hexadecimal #: 5DEAD

Unfortunately they lost the pair of original and coded hexadecimal numbers. However, luckily they found
lists of all hexadecimal number picked for decoding in a batch written for uniqueness. They used to
manufacture hundreds of thousands fans in each batch, therefore, it is difficult to code all of them for
manufacturing. However, they hire you to write a program for decoding. After decoding they can search
this code from list easily.

Input

The input has N test cases. The first line is the number N (0 < N ≤5000) that is number of test cases. Each
test case has 2 lines. First line has code in hexadecimal. Second line has format: K<space>HexList. Where:

K = Number of hexadecimal numbers to test (1≤ K ≤50000)

HexList = Space separated list of K hexadecimal numbers

Output

For each test case print "CaseN:" followed by decoded code if found in list or -1, if there is no matching
number.

ACM-ICPC Lahore Regional 2017

Sample Input Sample Output

6
5DEAD
7 5DEAD 10001 A7BE B236A 1DE2FB 23RAB A80F
4BB972FDE
8 4BB971FDE 4B0971F1E 4BB972FDE B236A
4BB9700DE 4BB970FDE 4BB971FDF AAFBCDE2
5DEAD
7 5DEAD 10001 BA7BE B236A 1DE2FB 23RAB A80F
819C65
15 D0C113 1FB52F A5CA21E DC955DAE 482E5C56
AD 4FB3 71B03A6 72B 92B 53 3DCE58 25B0823A
C03969 ACE83603
70D664E3D
40 549C28 BA2 D313DC 311E8 426DD8095 F6B
14E3A6 FE 9C74 CCFD5 13642E A4 145234C06
F2CE880BA 1CBF1 6793AF9 CDB F5C0B8 0D144D
F51FE 62EBB9C 5EC041A8D 9E FF 932 BF6E62
B5674 B608 C88 B358C28FA 11BB6EC 82
E31E82AEF 159138F 590DC888E 341DB9C4F 4D51
67B10B4 CCE6 5AD37482E
70D664ED3
40 549C28 BA2 D313DC 311E8 426DD8095 F6B
14E3A6 FE 9C74 CCFD5 13642E A4 145234C06
F2CE880BA 1CBF1 6793AF9 CDB F5C0B8 0D144D
F51FE 62EBB9C 5EC041A8D 9E FF 932 BF6E62
B5674 B608 C88 B358C28FA 11BB6EC 82
E31E82AEF 159138F 590DC888E 341DB9C4F 4D51
67B10B4 CCE6 5AD37482E

Case1:A7BE

Case2:AAFBCDE2

Case3:-1

Case4:C03969

Case5:341DB9C4F

Case6:-1

ACM-ICPC Lahore Regional 2017

Problem 10

Separation of Chemical Components

A company making detergents has been experimenting a lot of chemical combinations to make their
detergent better. They need to perform separation of components during the process. The people at the
company were puzzled over the method to separate components, whether they should remove the
components one by one or use a different approach. Each approach has its own merits and demerits.
Also, sometimes it is not possible to separate out single component due to its nature. Some engineer in
the company has decided to use a known heuristic to remove products from the mixture and then further
split the product into sub products until we get the separated out component. The heuristic gives the
number of possible separation sequences that will help separate sequences from a set of n components
and follows the following trend:

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, …

where each mixture with n components can be distilled using the number of sequences represented by
the (n-1)th element in the above trend. For example (if we start with n=0, then 42 in the trend is the 5th
element in the trend and 132 is the 6th element) there will be 42 possible separation sequences if we
have a mixture of 6 components. This method is based on separation of cheaper components (products)
first and the sequences generated are also optimal in terms of cost. The engineer now needs to calculate
the possible number of separation sequences given the number of components in a mixture. You have
to help the engineer and give a programming solution that takes number of components as input and
gives the possible number of separating sequences based on the above trend.

Input

First line gives the number of T test cases, where (0<T≤50). The next T lines have number of components
n (1≤n≤36) for each case.

Output

For each test case print "CaseN:" where N is the test case number, followed by the possible number of
separation sequences.

Sample Input Sample Output

6
2
3
4
5
6
13

Case1:1

Case2:2

Case3:5

Case4:14

Case5:42

Case6:208012

https://en.wikipedia.org/wiki/1_(number)
https://en.wikipedia.org/wiki/2_(number)
https://en.wikipedia.org/wiki/5_(number)
https://en.wikipedia.org/wiki/14_(number)
https://en.wikipedia.org/wiki/42_(number)
https://en.wikipedia.org/wiki/132_(number)

	Output
	For each test case print "CaseN:" followed by decoded code if found in list or -1, if there is no matching number.

